Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The detrital zone in the shorty crater cores

  • 20 Accesses

  • 1 Citations


The lower part of lunar cores 74002/1 contains pure fine-grained black soil grading upward to orange soil. The section, however, between 10 cm and the lunar surface contains a mixture of orange and dark soil with a clast-in-matrix texture and some agglutinates. Therefore, this upper section is interpreted as a detrital zone. Although Shorty Crater was formed approximately 30 m.y. ago, all indicators of soil age give a much shorter time for residence of the detrital zone. Both absolute agglutinate content and authigenic agglutinate content indicate a surface residence of less than 8 m.y. for the detrital portion of the core. Most calculated ages of the detrital zone cluster are around 3 m.y. Grain size distribution is characteristic of an immature soil and there is little evidence, indicated by lack of upward fining and decrease in coarsest grain sizes, ofin situ maturation of the section. Mixing with adjacent soils is very low, even though such soils lie only 0.5 M from the sampling site. Four of the five sub-strata in the upper 10 cm could have been produced by the impact event that produced the 20 M wide boulder field near the sampling site on the Shorty Crater rim. This event would distribute perched clasts over the sampling site. Thickness of the detrital part of the section is in keeping with its being ejecta from the boulder bed crater. The thickness of the agglutinate-rich zone, 1.5 cm, is reasonable for a less-than 4 m.y. residence time.

This is a preview of subscription content, log in to check access.


  1. Arnold, J. R.: 1975, ‘Monte Carlo Simulation of Turnover Processed in the Lunar Regolith’.Proc. Sixth, Lunar Sci. Conf. 2375–2395.

  2. Bailey, N. G. and Ulrich, G. E.: 1975, ‘Apollo 17 Voice Transcript Pertaining to the Geology of the Landing Site’. U.S. Geol. Surv. GD-74-031, 361 p.

  3. Crozaz, G., Drozd, R., Hohenberg, C., Morgan, C., Ralston, C., Walker, R., and Yuhas, D.: 1974, ‘Lunar Surface Dynamics: Some General Conclusions and New Results from Apollo 16 and 17’,Proc. Fifth Lunar Sci. Conf. 2475–2499.

  4. Drozd, R. J., Hohenberg, C. M., Morgan, C. J., and Ralston, C. E.: 1974, ‘Cosmic-Ray Exposure History at the Apollo 16 and Other Lunar Sites; Lunar Surface Dynamics’.Geochim. Cosmochim. Acta 38, 1625–1642.

  5. Duke, M. B. and Nagle, J. S.: 1974, with 1977, 1978 SupplementLunar Core Catalog, NASA S.P. 09252.

  6. Eberhardt, P., Eugster, O., Geiss, J., Graf, H., Grogles, N., Guggisberg, S., Jungck, M., Maurer, P., Morgeli, M., and Stettler, A.: 1974 ‘Solar Wind and Cosmid Radiation History of Taurus. Littrow Regolith’, inLunar Science V, The Lunar Science Institute, Houston, Texas. 197–199.

  7. Eugster, O., Eberhardt, P., Geiss, J., Grogler, N., Jungck, M., and Morgeli, M.: 1977. ‘The Cosmic-Ray Exposure History of Shorty Crater Samples: The Age of Shorty Crater’.Proc. Eighth Lunar Sci. Conf. 3059–3081.

  8. Fechtig, H., Hartung, J. B., Nabel, K., Neukum, G., and Storzer, D.: 1974, ‘Microcrater Studies, Derived Meteoroid Fluxes, and Comparison with Satellite-Borne Experiments’, inLunar Science V, the Lunar Science Institute, Houston, Texas. 222–224.

  9. Fleischer, R. L., Hart, H. R., Jr., and Giard, W. R.: 1974, ‘Surface History of Lunar Soil and Soil Columns’,Geochim. Cosmochim. Acta 38, 365–380.

  10. Fruland, R. M., Morris, R. B., and McKay, D. S.: 1977, ‘Apollo 17 Ropy Glasses’, inLunar Science VIII, The Lunar Science Institute, Houston, Texas. 337–339.

  11. Gault, D. E., Quaide, W. L., and Oberbeck, V. R.: 1968, ‘Impact Cratering Mechanics and Structures’, inShock Metamorphism of Natural Materials. Mono Book Corp. Baltimore, 87–99.

  12. Gault, D. E., Horz, F., Brownlee, D. E., and Hartung, J. B.: 1974, ‘Mixing of the Lunar Regolith’.Proc. Fifth Lunar Sci. Conf. 2365–2386.

  13. Goswami, J. N. and Lal, D.: 1974, ‘Cosmic Ray Irradiation at the Apollo 17 Site: Implication to Regolith Dynamics’. inLunar Science V, The Lunar Science Institute, Houston, Texas. 284–286.

  14. Goswami, J. H. and Lal, D.: 1974, ‘Cosmic Ray Irradiation at the Apollo 17 Site: Implications to Lunar Regolith Dynamics’,Proc. Fifth Lunar Sci. Conf. 2643–2662.

  15. Hartung, J. B., Horz, F., Aitken, F. K., Gault, D. E., and Brownles, D. E.: 1973, ‘The Development of Microcrater Populations on Lunar Rocks’,Proc. Fourth Lunar Sci. Conf. 3213–3234.

  16. Heiken, Grant: 1974, ‘A Catalog of Lunar Soils’. NASA SP. 221 p.

  17. Heiken, F. and McKay, D. S.: 1974, ‘Petrography of Apollo 17 Soils’.Proc. Fifth Lunar Sci. Conf. 843–860.

  18. Heiken, G. and McKay, D. S.: 1977, ‘Sample 74001 and its Significance for Models of Eruption Behavior of a Volcanic Vent in Eastern Mare Serentatis’, inLunar Science VIII, The Lunar Science Institute, Houston, Texas. 421–423.

  19. Hintenberger, H., Weber, H. W., and Schultz, L.: 1974, ‘Solar Spallogenic and Radiogenic Rare Gases in Apollo 17 Soils and Breccias’, inLunar Science V, The Lunar Science Institute, Houston, Texas. 334–336.

  20. Hintenberger, H., Weber, H. W., and Schultz, L.: 1974, ‘Solar, Spallogenic and Radiogenic Rare Gases in Apollo 17 Soils and Breccias’,Proc. Fifth Lunar Sci. Conf. 2005–2022.

  21. Hutcheon, I. D., MacDougall, D., and Stevenson, J.: 1974, ‘Apollo 17 Particle Track Studies; Surface Residence Times and Fission Track Ages for Orange Glass and Large Boulders’,Proc. Fifth Lunar Sci. Conf. 2597–2608.

  22. Jones, G. H. S.: 1976, ‘The Morphology of Central Uplift Craters’, Canadian Defence Research Establishment Suffield: Ralston, Alberta, Report 281, 207 p.

  23. Kirsten, T., Horn, P., Heymann, D., Hubner, W., and Storzer, D.: 1973, ‘Apollo 17 Crystalline Rocks and Soils: Rare Gases, Ion Tracks and Ages’,Trans. Am. Geophys. Union 54, 595–597.

  24. MacDougall, D., Hutcheon, I. D., and Price, P. B.: 1974, ‘Irradiation Records in Orange Glass and Two Boulders from Apollo 17’, inLunar Science V. The Lunar Science Institute, Houston, Texas. 483–485.

  25. McGetchin, T. R., Settle, M., and Head, J. W.: 1973, ‘Radial Thickness Variation in Impact Crater Ejecta: Implications for Lunar Basin Deposits’,Earth Planet. Sci. Letters 20, 226–236.

  26. McKay, D. S., Heiken, G. H., Taylor, R. M., Clanton, U. S., Morrison, D. A., and Ladle, G. H.: 1972, ‘apollo 14 Soils: Size Distribution and Particle Types’,Proc. Third Lunar Sci. Conf. 983–994.

  27. McKay, D. S. and Heiken, G. H.: 1973, ‘The South Ray Crater Age Paradox’,Proc. Fourth Lunar Sci. Conf. 41–47.

  28. McKay, D. S., Fruland, R. M., and Heiken, G. H.: 1974, ‘Grain Size and the Evolution of Lunar Soils’,Proc. Fifth Lunar Sci. Conf. 887–906.

  29. Morris, R. V.: 1976, ‘Surface Exposure Indices of Lunar Soils: A Comparative FMR Study’.Proc. Seventh Lunar Sci. Conf. 315–335.

  30. Muehlberger, W. R.et al.:, 1973, ‘Preliminary Investigation of the Apollo 17 Landing Site’, inApollo 17 Preliminary Science Report. NASA SP-330, 6-1-6-91.

  31. Munsell Color Co. 1966.Munsell Book of Color. Baltimore, Md.

  32. Schmitt, H. H. and Cernan, E. A.: 1973, ‘A Geological Investigation of the Taurus-Littrow Valley’, inApollo 17 Preliminary Science Report NASA SP-330 5-1-5-21.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nagle, J.S. The detrital zone in the shorty crater cores. The Moon and the Planets 18, 499–517 (1978). https://doi.org/10.1007/BF00897299

Download citation


  • Grain Size
  • Sampling Site
  • Boulder
  • Grain Size Distribution
  • Lunar Surface