The moon and the planets

, Volume 21, Issue 1, pp 3–16 | Cite as

Charged dust in the outer planetary magnetospheres

I. Physical and dynamical processes
  • Jay Roderick Hill
  • D. A. Mendis


We assume that typical interplanetary grains are fragile, aggregates of the Brownlee type, and discuss the physical and dynamical processes associated with their entry into the Jovian magnetosphere. Limiting ourselves to the equatorial plane of the planet, we show that grains traversing the outer edge of the co-rotating magnetodisc (r≈35R J ) are rapidly charged up to large negative potentials on both the day and the night sides. A parent grain of radiusR g ≈20μ is electrostatically disrupted when it attains a potential of about −220 V. While the eventual potential achieved by the smallest fragments (R g ≈0.1 μ) are controlled by the rapid field emission of electrons, those of the larger fragments (R g ≈1 μ) are set by the plasma and photoemission currents.

All the negatively charged fragments are strongly attracted towards the planet by the (radial) corotational electric field and some are stably trapped. We suggest that the sudden enhancement by about 2 orders of magnitude of the interplanetary dust flux measured by Pioneer 10, at about 30R J from Jupiter result from the combination of these two effects.

The different brightness asymmetries between the leading and the trailing sides of the outer and inner Galilean satellites appear to be a natural consequence of the way the trajectories of these charged dust grains intersect these satellite surfaces. Finally, the similarity in the brightness asymmetries between the Jovian and Saturnian satellites, and our belief that they have a similar cause, leads us to the expectation that Saturn's magnetic momentM and spin Ω, are parallel as in the case of Jupiter, with the limit of plasma co-rotation lying between the satellites Rhea and Iapetus.


Dust Equatorial Plane Outer Edge Large Fragment Charged Dust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brownlee, D. E., Tomandl, D., Blanchard, M. D., Ferry, G. V., and Kyte, F.: 1976,NASA TMX-73 152.Google Scholar
  2. DeForest, S. E.: 1972,J. Geophys. Res 77 651.Google Scholar
  3. Draine, B. T. and Salpeter, E. E.: 1979,Astrophys. J. (in press).Google Scholar
  4. Eviatar, A., Mekler, Y., and Coroniti, F. V.: 1976,Astrophys. J 205, 622.Google Scholar
  5. Fechtig, H., Grun, E., and Morfill, G.: 1978, paper read at theXXIth Plenary Meeting of COSPAR, Innsbruck, Austria (June 1978). To appear in the Proceedings, Pergamon Press.Google Scholar
  6. Feuerbacher, R. and Fitton, B.: 1972,J. Appl. Phys. 43, 1563.Google Scholar
  7. Fillius, R. W. and McIlwain, C. E.: 1974,Science 183, 314.Google Scholar
  8. Fillius, R. W., McIlwain, C. E. and Mogro-Camparo, A., 1975,Science 188, 465.Google Scholar
  9. Frank, L. A., Ackerson, K. L., Wolfe, T. H., and Mihalov, J. D.: 1976,J. Geophys. Res. 81, 457.Google Scholar
  10. Hill, J. R. and Mendis, D. A., 1979, Paper II (under preparation).Google Scholar
  11. Hill, T. W., Dessler, A. J., and Michel, F. C.: 1974,Geophys. Res. Lett. 1, 3.Google Scholar
  12. Hinteregger, H. E., Damon, K. R., and Hall, L. A., 1959,J. Geophys. Res. 64, 961.Google Scholar
  13. Humes, D. H., Alverez, J. M., Kinard, W. H., and O'Neal, R. L., 1975,Science 188, 473.Google Scholar
  14. Mendis, D. A.: 1978, paper read at theXXIth Plenary Meeting of COSPAR, Innsburck, Austria (June, 1978). To appear in the Proceedings, Pergamon Press.Google Scholar
  15. Mendis, D. A. and Axford, W. I.: 1974,Ann. Rev. Earth and Planet. Sci. 2, 419.Google Scholar
  16. Öpik, E. J.: 1956,Irish Astron. J. 4, 84.Google Scholar
  17. Prakash, A. and Brice, N.: 1975,The Magnetosphere of the Earth and Jupiter (V. Formisano (ed.)), D. Reidel Pub. Co., p. 411.Google Scholar
  18. Rawer, K.: 1963,Radio Astronomical and Satellite Studies of the Atmosphere (J. Aarons (ed.)), North Holland Pub. Co., p. 385.Google Scholar
  19. Rhee, J. W.: 1976,Interplanetary Dust and Zodiacal Light, Springer-Verlag, p. 238.Google Scholar
  20. Simpson, J. A., Hamilton, D., Lentz, G., McKibben, R. B., Mogro-Campero, A., Perkins, M., Pyle, K. R., and Tuzzolino, A. J.: 1974,Science 183, 306.Google Scholar
  21. Smith, E. J., Davis, L., Jr., Jones, D. E., Colburn, D. S., Coleman, P. J., Jr., Dyal, P., and Sonett, C. P.: 1974,Science 183 305.Google Scholar
  22. Trainor, J. H., McDonald, F. B., Teegarden, B. J., Webber, W. B., and Roelof, E. C.: 1974,J. Geophys Res. 79, 360.Google Scholar
  23. Trainor, J. H., Teegarden, B. J., Stilwell, D. E., McDonald, F. B., Roelof, E. C., and Weber, W. R.: 1974,Science 183, 311.Google Scholar
  24. Van Allen, J. A., Baker, D. N., Randall, B. A., Thomsen, M. F., Sentman, D. D., and Flindt, H. R.: 1974,Science 183, 309.Google Scholar
  25. Van Allen, J. A., Randall, B. A., Baker, D. N., Goertz, C. K., Sentman, D. D., Thomsen, M. F., and Flindt, H. R.: 1975,Science 188, 459.Google Scholar
  26. Whipple, E. C., Jr., 1965,NASA-CSFC preprint No. X-615-65-296.Google Scholar

Copyright information

© D. Reidel Publishing Company 1979

Authors and Affiliations

  • Jay Roderick Hill
    • 1
  • D. A. Mendis
    • 1
  1. 1.Department of Applied Physics and Information ScienceUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations