The moon and the planets

, Volume 19, Issue 2, pp 169–184 | Cite as

Chemical condensation sequences in supernova ejecta

  • James M. Lattimer
  • Lawrence Grossman


The mineralogical composition of grains produced in supernova ejecta is explored via chemical equilibrium condensation computations. These calculations are carried out for chemical compositions characteristic of each of several supernova zones, taking into account the pressure decrease due to adiabatic expansion and condensation. The distributions of the major elements among the various gaseous species and solid phases are graphically displayed. These computations reveal that many of the major condensates from supernova ejecta are also stable against evaporation in a gas of solar composition at high temperatures. This is especially true for minerals containing the elements O, Mg, Al, Si, Ca, Fe and Ti. Grains which form in supernova ejecta are less likely to become homogenized with solar nebular gas than SN gas and are thus potential sources of exotic isotopic compositions in the early solar system. The calculated elemental distributions of supernova condensates are applied to problems concerning isotopic anomalies and large mass-dependent isotopic fractionations discovered in the meteorite Allende. The order in which the major elements become totally condensed is found to be nearly independent of the supernova zone considered, being the same as that for a solar gas. The consequence of this may be that some of the observed depletions of heavy elements in the interstellar gas are due to supernova-produced dust.


Dust Major Element Chemical Equilibrium Isotopic Fractionation Gaseous Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnett, W. D.: 1969,Astrophys. J. 157, 1369.Google Scholar
  2. Baedecker, P. A. and Wasson, J. T.: 1975,Geochim. Cosmochim. Acta 39, 735.Google Scholar
  3. Black, D. C.: 1972,Geochim. Cosmochim. Acta 36, 377.Google Scholar
  4. Cameron, A. G. W. and Truran, J. W.: 1977,Icarus 30, 447.Google Scholar
  5. Chipman, J. and Baschwitz, R.: 1963,Trans. Met. Soc. AIME,229, 473.Google Scholar
  6. Clayton, D. D.: 1975,Astrophys. J. 199, 765.Google Scholar
  7. Clayton, D. D. and Ramadurai, S.: 1977,Nature 265, 427.Google Scholar
  8. Clayton, D. D. and Wickramasinghe, N. C.: 1976,Astrophys Space Sci. 42, 463.Google Scholar
  9. Clayton, R. N., Grossman, L., and Mayeda, T. K.: 1973,Science 182, 485.Google Scholar
  10. Clayton, R. N. and Mayeda, T. K.: 1977,Geophys. Res. Lett. 4, 295.Google Scholar
  11. Clayton, R. N., Mayeda, T. K., and Epstein, S.: 1978,Proceedings of the Ninth Lunar Science Conf. in press.Google Scholar
  12. Clayton, R. N., Onuma, N., Grossman, L., and Mayeda, T. K.: 1977,Earth Planet Sci. Lett.,34, 209.Google Scholar
  13. Falk, S. W., Lattimer, J. M., and Margolis, S. H.: 1978,Nature 270, 700.Google Scholar
  14. Field, G. B.: 1974,Astrophys. J. 187, 453.Google Scholar
  15. Field, G. B.: 1975, inThe Dusty Universe (G. B. Field and A. G. W. Cameron, eds.), Neale Watson Academic Publications.Google Scholar
  16. Grossman, L.: 1972,Geochim. Cosmochim. Acta 36, 597.Google Scholar
  17. Grossman, L.: 1972, inThe Dusty Universe (G. B. Field and A. G. W. Cameron, eds.), Neale Watson Academic Publications.Google Scholar
  18. Grossman, L. and Ganapathy, R.: 1976,Geochim. Cosmochim. Acta 40, 331.Google Scholar
  19. Hoyle, F. and Wickramasinghe, N. C.: 1970,Nature 226, 62.Google Scholar
  20. Larimer, J. W.: 1975,Geochim. Cosmochim. Acta 32, 1187.Google Scholar
  21. Lattimer, J. M. and Falk, S. W.: 1978, in preparation.Google Scholar
  22. Lattimer, J. M., Schramm, D. N., and Grossman, L.: 1978,Astrophys. J. 219, 230.Google Scholar
  23. Lee, T., Papanastassiou, D. A., and Wasserburg, G. J.: 1976,Astrophys. J. (Letters) 211, L107.Google Scholar
  24. Lee, T., Papanastassiou, D. A., and Wasserburg, G. J.: 1978,Astrophys. J. (Letters) 220, L21.Google Scholar
  25. Margolis, S. H.: 1978, in preparation.Google Scholar
  26. McCulloch, M. T. and Wasserburg, G. J.: 1978,Astrophys. J. (Letters) 220, L15.Google Scholar
  27. Ney, E. P. and Hatfield, B. F.: 1977, preprint.Google Scholar
  28. Pardo, R. C., Couch, R. G., and Arnett, W. D.: 1974,Astrophys. J. 191, 711.Google Scholar
  29. Reynolds, J. H. and Turner, G.: 1964,J. Geophys. Res. 69, 3263.Google Scholar
  30. Routly, P. M. and Spitzer, L., Jr.: 1952,Astrophys. J. 115, 227.Google Scholar
  31. Sabu, D. D. and Manuel, O. K.: 1976,Nature 262, 28.Google Scholar
  32. Schramm, D. N.: 1978,Proc. Conf. on Protostars and Planets, Univ. Arizona Press, Tucson.Google Scholar
  33. Truran, J. W.: 1978, private communication.Google Scholar
  34. Truran, J. W. and Cameron, A. G. W.: 1978,Astrophys. J. 219, 226.Google Scholar
  35. Wasserburg, G. J., Lee, T., and Papanastassiou, D. A.: 1978,Geophys. Res. Lett. 4, 299.Google Scholar
  36. Woodward, P. R.: 1976,Astrophys. J. 207, 484.Google Scholar
  37. Woolley, F. and Elliott, J. F.: 1967,Trans. Met. Soc. AIME 239, 1872.Google Scholar
  38. Woosley, S. E., Arnett, W. D., and Clayton, D. D.: 1973,Astrophys. J. Suppl. 26, 231.Google Scholar
  39. Yeh, H.-W. and Epstein, S.: 1978,Proc. of the Ninth Lunar Science Conf., in press.Google Scholar

Copyright information

© D. Reidel Publishing Company 1978

Authors and Affiliations

  • James M. Lattimer
    • 1
  • Lawrence Grossman
    • 2
  1. 1.Department of AstronomyUniversity of Illinois at Urbana-ChampaignUSA
  2. 2.Dept. of Geophysical Sciences, and Enrico Fermi InstituteThe University of ChicagoUSA

Personalised recommendations