Instructional Science

, Volume 23, Issue 5–6, pp 381–403 | Cite as

Modeling acquisition of an advanced skill: The case of Morse code copying

  • Robert A. Wisher
  • Mark A. Sabol
  • Richard P. Kern
Articles

Abstract

To determine characteristics of those who pass, 21 soldiers were tracked through a course in Morse code copying. Passers differed from “attrites” in the form of functions relating reaction times to presentation speed (p < 0.05). We suggest this is due to differing rates of “copying behind” and offer a model in which an initially speeded task converts, at expert level, to one of delayed responding. We then show how the model explains otherwise puzzling data. This success demonstrates the need to understand the information-processing complexities of an advanced skill before an appropriate student model can be created for instructional purposes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, J. S. & Burton, R. R. (1978). Diagnostic models for procedural bugs in basic mathematical skills.Cognitive Science 2: 155–192.Google Scholar
  2. Bryan, W. L. & Harter, N. (1897). Studies in the physiology and psychology of telegraphy.Psychological Review 4: 27–53Google Scholar
  3. Bryan, W. L. & Harter, N. (1899). Studies on the telegraphic language.Psychological Review 6: 345–375.Google Scholar
  4. Chase, W. G. & Simon, H. A. (1973). Perception in chess.Cognitive Psychology 4: 55–81.Google Scholar
  5. Directorate of Evaluation and Standardization (December, 1990). Ability-based Morse training. U. S. Army Intelligence School, Devens, DOES Report #011.Google Scholar
  6. Donders, R C. (1868–1869). On the speed of mental processes. Translated in W. G. Koster ed.,Attention and Performance II. Acta Psychologica, 1969, 30: 412–431.Google Scholar
  7. Dosher, B. A. (1979). Empirical approaches to information processing: Speed accuracy tradeoff functions for reaction times.Acta Psychologica 43: 347–359.Google Scholar
  8. Fisher, D. F. & Townsend, J. T. (1993). Models of Morse code skill acquisition: Simulation and analysis. U. S. Army Research Institute for the Behavioral and Social Sciences, Research Product 93-04, Alexandria, VA.Google Scholar
  9. Fisk, A. D., Ackerman, P. L. & Schneider, W. (1987). Automatic and controlled processing theory and its application to human factors problems, in P. A. Hancock ed.,Human Factors Psychology, Advances in Psychology Series 47: 159–197. New York: North Holland.Google Scholar
  10. Fisk, A. D., Lee, M. D. & Rogers, W. A. (1991). Recombination of automatic processing components: The effects of transfer, reversal, and conflict situations.Human Factors 33: 267–280.Google Scholar
  11. Fleishman, E. A. (1955). Predicting code proficiency of radio telegraphers by means of aural tests.Journal of Applied Psychology 39: 150–155Google Scholar
  12. Fleishman, E. A. & Fruchter, B. (1960). Factor structure and predictability of successive stages of learning Morse code.Journal of Applied Psychology 44(2): 97–101.Google Scholar
  13. Gentner, D. R. (1983). The acquisition of typewriting skill.Acta Psychologica 54: 233–248.Google Scholar
  14. Kantowitz, B. (1974). Double stimulation, in B. H. Kantowitz ed.,Human information processing: Tutorials in performance and cognition (pp. 83–131). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
  15. Kern, R. P. (1993). Development and application of a new approach for classifying errors made during receiving Morse code. U. S. Army Research Institute for the Behavioral and Social Sciences, Technical Report 973, Alexandria, VA.Google Scholar
  16. Kurland, L. C. & Tenney, Y. J. (1988). Issues in developing an intelligent tutor for a real-world domain: Training in radar mechanics, in Psotka, J., Massey, L. D. & Mutter, S. A. eds.,Intelligent Tutoring Systems, Lessons Learned. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
  17. LaBerge, D. L. & Samuels, S. J. (1974). Toward a theory of automatic information processing in reading.Cognitive Psychology 6: 293–323.Google Scholar
  18. Lintern, G. & Gopher, D. (1978). Adaptive training of perceptual-motor skills: Issues, results, and future directions.International Journal of Man-Machine Studies 10: 521–551.Google Scholar
  19. Logan, G. D. (1978). Attention in character classification: Evidence for the automaticity of component stages.Journal of Experimental Psychology: General 107: 32–63.Google Scholar
  20. Newell, A. & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of practice, in J. R. Anderson ed.,Cognitive skills and their acquisition. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  21. Newell, A. (1990).Unified theories of cognition. Cambridge, MA: Harvard University Press.Google Scholar
  22. Norman, D. A. & Rumelhart, D. E. (1970). A system for perception and memory, in D. A. Norman ed.,Models of human memory. New York: Academic Press.Google Scholar
  23. Ollman, R. T. (1977). Choice reaction time and the problem of distinguishing task effects from strategy effects, in S. Domic ed.,Attention and Performance VI (pp. 99–113). Hillsdale, N.J.: Erlbaum.Google Scholar
  24. Pachella, R. G. (1974). The interpretation of reaction time in information processing research, in B. H. Kantowitz ed.,Human information processing: Tutorials in performance and cognition. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  25. Park, O., Perez, R. & Seidel, R. (1987). Intelligent CAI: Old wine in new bottles or a new vintage? in G. P. Kearsley ed.,Artificial intelligence and instruction: Applications and methods. Addison-Wesley.Google Scholar
  26. Pliske, R. M. (1984). Cross-validation of the computerized adaptive screening test (CAST). U.S. Army Research Institute for the Behavioral and Social Sciences, Research Report 1372, Alexandria, VA.Google Scholar
  27. Psotka, J., Massey, L. D. & Mutter, S. A. (eds.) (1988).Intelligent Tutoring Systems, Lessons Learned. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
  28. Regian, J.W. (1994, August). Cognitive approaches to automated instruction. Paper presented at the Third Practical Aspects of Memory Conference, College Park, MD.Google Scholar
  29. Rothkopf, E. Z. (1957). A measure of stimulus similarity and errors in some paired-associate learning tasks.Journal of Experimental Psychology 53: 94–101.Google Scholar
  30. Schneider, W. & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search and attention.Psychological Review 84: 1–66.Google Scholar
  31. Seibel, R. (1963). Discrimination reaction time for a 1,023 alternative task.Journal of Experimental Psychology 66: 215–226Google Scholar
  32. Shepard, R. N. (1963). Analysis of proximities as a technique for the study of information processing in man.Human Factors 5: 33–48.Google Scholar
  33. Shute, V. J., Regian, J. W. & Gawlick-Grendall, L. A. (1993). Modeling practice, performance, and learning, in Towne, D. M., DeJong, T. & Spanda, H. eds.,Simulation-based experiential learning, NATO ASI Series F, 122: 133–148. Berlin: Springer-Verlag.Google Scholar
  34. Sternberg, S. (1969). The discovery of processing stages: Extensions of Donder's method.Attention and Performance II.Acta Psychologica 30: 276–315.Google Scholar
  35. Strayer, D. L. & Kramer, A. F. (1994a). Strategies and automaticity: I. Basic findings and conceptual framework.Journal of Experimental Psychology: Learning, Memory, and Cognition 20: 318–341Google Scholar
  36. Strayer, D.L. & Kramer, A.F. (1994b). Strategies and automaticity: II. Dynamic aspects of strategy adjustment.Journal of Experimental Psychology: Learning, Memory, and Cognition 20: 342–365Google Scholar
  37. Taylor, D. W. (1943). Learning telegraphic code.Psychological Bulletin 40(7): 461–487.Google Scholar
  38. Thorndike, E. L. (1898). Animal Intelligence.Psychological Review Monograph Supplement No. 8.Google Scholar
  39. Thurstone, L. L. (1919). Mental tests for prospective telegraphers.Journal of Applied Psychology 3: 110–118.Google Scholar
  40. Tulloss, R. (1918). The learning curve. Unpublished Ph.D. thesis, Harvard University.Google Scholar
  41. Townsend, J. T. (1992). Initial mathematical models of early Morse code performance. U.S. Army Research Institute for the Behavioral and Social Sciences, Research Note, Alexandria, VA.Google Scholar
  42. Wish, M. (1967). A structural theory for the perception of Morse code signals and related rhythmic patterns. Unpublished Ph.D. dissertation, University of Michigan.Google Scholar
  43. Woodworth, R. S. (1938).Experimental Psychology. New York: Holt.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Robert A. Wisher
    • 1
  • Mark A. Sabol
    • 1
  • Richard P. Kern
    • 1
  1. 1.U. S. Army Research Institute for the Behavioral and Social SciencesAlexandriaUSA

Personalised recommendations