Advertisement

Soviet Physics Journal

, Volume 34, Issue 9, pp 755–761 | Cite as

Methods of generating integrable potentials for the Sochrödinger equation and nonlocal symmetries

  • V. G. Bagrov
  • A. V. Shapovalov
  • I. V. Shirokov
Elementary Particle Physics and Field Theory
  • 26 Downloads

Abstract

Methods of generating exactly integrable potentials for the Schrödinger equation are consolidated within the framework of a simple construction. The Abraham-Moses method is generalized to the case of the nonstationary Schrödinger equation. An algorithm is proposed for solving the Schrödinger equation based on nonlocal symmetry operators.

Keywords

Simple Construction Symmetry Operator Integrable Potential Nonlocal Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. G. Bagrov, A. V. Shapovalov, and I. V. Shirokov, Phys. Lett. A,147, No. 7, 348–350 (1990).Google Scholar
  2. 2.
    V. G. Bagrov, A. V. Shapovalov, and I. V. Shirokov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 11, 114–116 (1989).Google Scholar
  3. 3.
    G. Darboux, C. R. Acad. Sci., Paris,94, 1456 (1982).Google Scholar
  4. 4.
    P. B. Abraham and H. E. Moses, Phys. Rev. A,22, No. 4, 1333–1340 (1980).Google Scholar
  5. 5.
    M. Luban and D. L. Pursey, Phys. Rev. D,33, No. 2, 431–436 (1986).Google Scholar
  6. 6.
    D. L. Pursey, Phys. Rev. D,33, No. 4, 1048–1055 (1986).Google Scholar
  7. 7.
    D. Levi, Inverse Problems, No. 4, 165–172 (1988).Google Scholar
  8. 8.
    Humi Mayer, J. Phys. A: Math. Gen.,21, 2075–2084 (1988).Google Scholar
  9. 9.
    O. V. Kaptsov, Dokl. Akad. Nauk SSSR,262, No. 5, 1056–1059 (1982).Google Scholar
  10. 10.
    A. M. Vinogradov and I. S. Krasil'shchik, Dokl. Akad. Nauk SSSR,275, No. 5, 1044–1049 (1984).Google Scholar
  11. 11.
    V. I. Fushchich, Dokl. Akad. Nauk SSSR,246, No. 4, 846–850 (1979).Google Scholar
  12. 12.
    K. Kiso, Hokkaido Math. J.,18, No. 1, 125–136 (1989).Google Scholar
  13. 13.
    N. Kh. Ibraginov, Transformation Groups in Mathematical Physics [in Russian], Nauka, Moscow (1983).Google Scholar
  14. 14.
    A. V. Mikhailov, A. B. Shabat, and R. I. Yamilov, Usp. Mat. Nauk,44, No. 4, 3–53 (1987).Google Scholar
  15. 15.
    G. Neugebauer and R. Meinel, Phys. Lett.,A100, No. 9, 467–470 (1984).Google Scholar
  16. 16.
    V. B. Matveev, M. A. Salle, and A. V. Rybin, Inverse Problems, No. 4, 173–183 (1988).Google Scholar
  17. 17.
    V. E. Zakharov, “Method of inverse scattering problems,” in: Solitons, R. K. Bullough and P. J. Caudrey (eds.), Springer-Verlag, New York (1980).Google Scholar
  18. 18.
    V. A. Marchenko, Sturm-Liouville Operators and Their Applications [in Russian], Naukova Dumka, Kiev (1977).Google Scholar
  19. 19.
    B. M. Levitan, Inverse Sturm-Liouville Problems [in Russian], Nauka, Moscow (1984).Google Scholar
  20. 20.
    V. I. Malkin and V. I. Man'ko, Pis'ma Zh. Éksp. Teor. Fiz.,2, 230–234 (1965).Google Scholar
  21. 21.
    V. N. Shapovalov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 57–64, 64–70 (1977).Google Scholar
  22. 22.
    W. Miller, Symmetry and Separation of Variables, Addison-Wesley, Reading, MA (1977).Google Scholar
  23. 23.
    A. V. Ovsyannikov (Ovsiannikov), Group Analysis of Differential Equations, Academic Press, New York (1982).Google Scholar
  24. 24.
    P. Oliver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York (1986).Google Scholar
  25. 25.
    V. N. Shapovalov and N. B. Sukhomlin, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 12, 100–105 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • V. G. Bagrov
    • 1
  • A. V. Shapovalov
    • 1
  • I. V. Shirokov
    • 1
  1. 1.V. V. Kuibyshev State UniversityTomsk

Personalised recommendations