The moon and the planets

, Volume 18, Issue 3, pp 281–320 | Cite as

Thermal evolutions of the terrestrial planets

  • M. Nafi Toksöz
  • Albert T. Hsui
  • David J. Johnston
Article

Abstract

The thermal evolution of the Moon, Mercury, Mars, Venus and hypothetical minor planets is calculated theoretically, taking into account conduction, solid-state convection, and differentiation. An assortment of geological, geochemical, and geophysical data is used to constrain both the present day temperatures and thermal histories of the planets' interiors. Such data imply that the planets were heated during or shortly after formation and that all the terrestrial planets started their differentiations early in their history. Initial temperatures and core formation play the most important roles in the early differentiation. The size of the planet is the primary factor in determining its present day thermal state. A planetary body with radius less than 1000 km is unlikely to reach melting given heat source concentrations similar to terrestrial values and in the absence of intensive early heating such as short half-life radioactive heating and inductive heating.

Studies of individual planets are constrained by varying amounts of data. Most data exist for the Earth and Moon. The Moon is a differentiated body with a crust, a thick solid mantle and an interior region which may be partially molten. It is presently cooling rapidly and is relatively inactive tectonically.

Mercury most likely has a large core. Thermal calculations indicate it may have a 500 km thick solid lithosphere, and the core may be partially molten if it contains some heat sources. If this is not the case, the planet's interior temperatures are everywhere below the melting curve for iron. The thermal evolution is dominated by core separation and the high conductivity of iron which makes up the bulk of Mercury.

Mars, intermediate in size among the terrestrial planets, is assumed to have differentiated an Fe−FeS core. Differentiation and formation of an early crust is evident from Mariner and Viking observations. Theoretical models suggest that melting and differentiation of the mantle silicates has occurred at least up until 1 billion years ago. Present day temperature profiles indicate a relatively thick (∼250 km) lithosphere with a possible asthenosphere below. The core is molten.

Venus is characterized as a planet similar to the Earth in many respects. Core formation probably occurred during the first billion years after the formation. Present day temperatures indicate a partially molten upper mantle overlain by a 100 km thick lithosphere and a molten Fe−Ni core. If temperature models are good indicators, we can expect that today, Venus has tectonic processes similar to the Earth's.

References

  1. Albee, A. L., Chodos, A. A., Dymek, R. F., Cancarz, A. J., Goldman, D S., Papanastassiou, D. A., and Wasserburg, G. J.: 1974, ‘Dunite from the lunar highlands: petrography, deformational history, Rb-Sr age (abs.)’,Lunar Science V, 13–51, The Lunar Science Institute, Houston.Google Scholar
  2. Alfvén, H. and Arrhenius, G.: 1976,Evolution of the Solar System. NASA SP-345, Scientific and Technical Information Office, NASA, Washington, DC.Google Scholar
  3. Anders, E.: 1977 ‘Chemical compositions of the Moon, Earth, and eucrite parent body’,The Moon, A New Appraisal. The Royal Soc., London, 23–40.Google Scholar
  4. Anderson, D. L. and Phinney, R. A.: 1967, ‘Early thermal history of the terrestrial planets’. InMantles of the Earth and Terrestrial Planets, S. K. Runcorn (ed.), pp. 113–125, Interscience, London.Google Scholar
  5. Anderson, D. L.: 1972, ‘Internal constitution of Mars’,J. Geophys. Res. 77, 789.Google Scholar
  6. Anderson, D. L. and Hanks, T. C.: 1972, ‘Is the Moon hot or cold?’Science 178, 1245–1249.Google Scholar
  7. Anderson, D. L.: 1973, ‘The composition and origin of the Moon’,Earth Planet. Sci. Lett. 18, 301–316.Google Scholar
  8. Anderson, D. L., Miller, W. F., Latham, G. V., Nakamura, Y., Toksöz, M. N., Dainty, A. M., Duennebier, F. K., Lazarewicz, A. R., Kovach, R. L., and Knight, T. C. D.: 1977, ‘Seismology on Mars’,J. Geophys. Res. 82, 4524–4546.Google Scholar
  9. Arkani-Hamed, J.: 1973, ‘Viscosity of the Moon I: after mare formation’,The Moon 6, 100–111.Google Scholar
  10. Arvidsen, R. E.: 1974, ‘Morphologic classification of Martian craters and some implications’,Icarus 22, 264–271.Google Scholar
  11. Baird, A. K., Toulmin III, P., Clark, B. C., Rose, Jr., H. J., Keil, K., Christian, R. P., and Gooding, J. L.: 1976, ‘Mineralogic/petrologic implications of Viking geochemical results from Mars: interim report’,Science 174, 1288–1293.Google Scholar
  12. Baldwin, R. B.: 1970, ‘Absolute ages of the lunar maria and large craters. II. The viscosity of the Moon's outer layers’,Icarus 13, 215–225.Google Scholar
  13. Binder, A. B. and Davis, D. R.: 1973, ‘Internal structure of Mars’,Phys. Earth Planet. Int. 7, 477–485.Google Scholar
  14. Blackshear, W. T. and Gapcynoki, J. P.: 1977, ‘An improved value of the lunar moment of inertia’,J. Geophys. Res. 82, 1699–1701.Google Scholar
  15. Boyde, F. R. and England, J. L.: 1963, ‘Effect of pressure on the melting of diopside, CaMgSi2O6, and Albite, NaAlSi3O8, in the range up to 50 kilobars’.J. Geophys. Res. 68, 311–323.Google Scholar
  16. Cadogan, P. H. and Turner, G.: 1976, ‘The chronology of the Apollo 17 station 6 boulder’,Proc. Seventh Lunar Sci. Conf. 2267–2285.Google Scholar
  17. Campbell, D. B., Dyce, R. B., Ingalls, R. P., Pettengil, G. H., and Shapiro, I. I.: 1972, ‘Venus: topography revealed by radar data’,Science 175, 514.Google Scholar
  18. Carr, M. H.: 1973, ‘Volcanism on Mars’,J. Geophys. Res. 78, 4049.Google Scholar
  19. Carr, M. H.: 1974, ‘The role of lava erosion in the formation of lunar rills and Martian channels’,Icarus 22, 1–23.Google Scholar
  20. Carr, M. H., Greeley, R., Blasius, K. R., Guest, J. E., and Murray, J. B.: 1977, ‘Some Martian volcanic features viewed from the Viking orbiters’,J. Geophys. Res. 82, 3985–4015.Google Scholar
  21. Carter, N. L.: 1976, ‘Steady-state flow of rocks’,Rev. Geophys. Space Phys. 14, 301–360.Google Scholar
  22. Cassen, P. and Reynolds, R. T.: 1973, ‘The role of convection in the Moon’,J. Geophys Res. 78, 3202–3215.Google Scholar
  23. Cassen, P. and Reynolds, R. T.: 1974, ‘Convection in the Moon: effect of variable viscosity’,J. Geophys. Res. 79, 2937–2944.Google Scholar
  24. Cassen, P., Young, R. E., Schubert, G., and Reynolds, R. T.: 1976, ‘Implications of an internal dynamo for the thermal history of Mercury’,Icarus 28, 501–508.Google Scholar
  25. Chandrasekhar, S.: 1961,Hydrodynamic and Hydromagnetic Stability, Oxford University Press, London.Google Scholar
  26. Chapman, C. R.: 1974, ‘Cratering on Mars, I. Cratering and obliteration history’,Icarus 22, 272–291.Google Scholar
  27. Clark, S. P., Jr.: 1966,Handbook of Physical Constants, Geol. Soc. Am. Memoir 97.Google Scholar
  28. Clark, R. S. and Keith, J. S.: 1973, ‘Determination of natural and cosmic ray induced radionuclides in Apollo 16 lunar samples (abs.)’,Lunar Science IV, 146–147, The Lunar Science Institute, Houston.Google Scholar
  29. Clark, B. C., Baird, A. K., Rose, Jr., H. J., Toulmin III, P., Keil, K., Castro, A. J., Kelliher, W. C., Rowe, C. D., and Evans, P. H.: 1976, ‘Inorganic analyses of Martian surface samples at the Viking landing sites’,Science 194, 1283–1288.Google Scholar
  30. Dainty, A. M., Toksöz, M. N., and Stein, S.: 1976, ‘Seismic investigation of the lunar interior’,Proc. Seventh Lunar Sci. Conf., Pergamon Press, New York, 3057–3075.Google Scholar
  31. Doe, B.: 1973, Lunar chronology, written communication.Google Scholar
  32. Dolginov, S. S., Yeroshenko, Y. G., and Zhuzgov, J. N.: 1972, ‘The magnetic field in the very close neighborhood of Mars according to data from the Mars and Mars 3 spacecraft’,Goddard Space Flight Center Report X-690-72-434.Google Scholar
  33. Duba, A. and Ringwood, A. E.: 1973, ‘Electrical Conductivity, internal temperatures and thermal evolution of the Moon’,The Moon 7, 356–376.Google Scholar
  34. Duba, A., Heard, H. C., and Schock, R. N.: 1976, ‘Electrical conductivity of ortho-pyroxene to 1400°C and the resulting selenotherm’,Proc. Seventh Lunar Conf. 3173–3181.Google Scholar
  35. Duke, M. B. and Silver, E. T.: 1967, ‘Petrology of eucrites, howardites and mesosiderites’,Geochim. Cosmochim. Acta 31, 1637–1665.Google Scholar
  36. Dyal, P., Parkin, C. W., and Cassen, P.: 1972, ‘Surface magnetometer experiments: internal lunar properties and lunar field interactions with the solar plasma’, inProc. Lunar Sci. Conf. III 3, D. R. Criswell (ed.), 2287–2307, MIT Press, Cambridge.Google Scholar
  37. Dyal, P., Parkin, C. W., and Daily, W. D.: 1973, ‘Surface magnetometer experiments: internal lunar conductivity profile and steady field measurements (abs.)’,Lunar Science IV, 205, The Lunar Science Institute, Houston.Google Scholar
  38. Fish, R. A., Goles, G. G., and Anders, E.: 1960, ‘The record of the meteorites III. On the development of meteorites in asteroidal bodies’,Astrophys. J. 132, 143–256.Google Scholar
  39. Florensky, C. P., Basilevsky, A. T., Burba, G. A., Nikolaeva, O. V., Pronin, A. A., and Volkov, V. P.: 1977, ‘First panoramas of the Venusian surface (abs.)’Lunar Science VIII, 302–304, The Lunar Science Institute, Houston.Google Scholar
  40. Fricker, P. E., Reynolds, R. T., and Summers, A. L.: 1967, ‘On the thermal history of the Moon’,J. Geophys. Res. 72, 2649.Google Scholar
  41. Fricker, P. E., Reynolds, R. T., and Summers, A. L.: 1974, ‘On the thermal evolution of the terrestrial planets’,The Moon 9, 211–218.Google Scholar
  42. Fricker, P. E., Reynolds, R. T., Summers, A. L., and Cassen, P.: 1976, ‘Does Mercury have a molten core?’,Nature 259, 293–294.Google Scholar
  43. Gaffey, M. J. and McCord, T. B.: 1977, ‘Asteroid surface materials: mineralogical characterizations and cosmological implications (abs.)’,Lunar Science VII, 343–345, The Lunar Science Institute, Houston.Google Scholar
  44. Gault, D. E., Burns, J. A., Cassen, P., and Strom, R. G.: 1977, Mercury,Ann. Rev. Astron. Astrophys., in press.Google Scholar
  45. Goettel, K. A.: 1972, ‘Partitioning of potassium between silicates and sulphide melts: experiments relevant to the Earth's core’,Phys. Earth Planet. Int. 6, 161.Google Scholar
  46. Goettel, K. A. and Barshay, S. S.: 1976, ‘The chemical equilibrium for condensation in the solar nebula: assumptions, implications, and limitations’. Submitted to Proc. of the NATO Advanced Study Institute, “The Origin of the Solar System”, (Newcastle upon Tyne, March 29–April 9, 1976).Google Scholar
  47. Goins, N. R., Dainty, A. M., and Toksöz, M. M.: 1977, ‘The deep seismic structure of the Moon’,Proc. Eighth Lunar Sci. Conf., Pergamon Press, New York, 471–486.Google Scholar
  48. Green, D. H. and Ringwood, A. E.: 1969, ‘Mineralogy of peridotitic compositions under mantle conditions’,Phys. Earth Planet. Int. 3, 359.Google Scholar
  49. Grossman, L. and Larimer, J. W.: 1974, ‘Early chemical history of the solar system’,Rev. Geophys. Space Phys. 12, 71.Google Scholar
  50. Hallam, M.: 1973, ‘Heat sources for early differentiation of the lunar interior (abs.)’,EOS. Trans. Am. Geophys. Un. 54, 344.Google Scholar
  51. Hanks, T. C. and Anderson, D. L.: 1969, ‘The early thermal history of the Earth’,Phys. Earth Planet. Int. 2, 19–29.Google Scholar
  52. Hanks, T. C. and Anderson, D. L.: 1972, ‘Origin evolution and present thermal state of the Moon’,Phys. Earth Planet. Int. 5, 409–425.Google Scholar
  53. Hays, J. F.: 1972, ‘Radioactive heat sources in the lunar interior’,Phys. Earth Planet. Int. 5, 77–84.Google Scholar
  54. Herbert, F., Sonett, C. P., and Wiskerchen, M. J.: 1977, ‘Model “zero age” lunar thermal profiles resulting from electrical induction’,J. Geophys. Res. 82, 2054–2060.Google Scholar
  55. Higgins, G., and Kenedy, G. C.: 1971, ‘The adiabatic gradient and the melting point gradient in the core of the Earth’,J. Geophys. Res. 76, 1870.Google Scholar
  56. Housley, R. M. and Morin, F. J.: 1972, ‘Electrical conductivity of olivine and the lunar temperature profile’,The Moon 4, 35–38.Google Scholar
  57. Hsui, A. T., Turcotte, D. L., and Torrance, K. E.: 1972, ‘Finite-amplitude thermal convection within a self-gravitating fluid sphere’,Geophys. Fluid Dyn. 3, 35–44.Google Scholar
  58. Hsui, A. T. and Toksöz, M. N.: 1977, ‘Thermal evolution of planetary size bodies’,Proc. Eighth Lunar Sci. Conf., Pergamon Press, New York, 447–461.Google Scholar
  59. Johnston, D. H., McGetchin, T. R., and Toksöz, M. N.: 1974, ‘The thermal state and internal structure of Mars’,J. Geophys. Res. 79, 3959–3971.Google Scholar
  60. Johnston, D. H. and Toksöz, M. N.: 1977, ‘Internal structure and properties of Mars’,Icarus, in press.Google Scholar
  61. Jones, K. L.: 1974, ‘Evidence for an episode of crater obliteration intermediate in Martian history’,J. Geophys. Res. 79, 3917–3932.Google Scholar
  62. Kaula, W. M.: 1966, ‘Thermal effects of tidal friction’, InThe Earth-Moon System, (B. G. Marsden and A. G. W. Cameron, eds.), pp. 46–51, Plenum Press, New York.Google Scholar
  63. Kaula, W. M.: 1975, ‘The seven ages of a planet’,Icarus 26, 1–15.Google Scholar
  64. Kaula, W. M. and Yoder, C. F.: 1976, ‘Lunar orbit evolution and tidal heating of the Moon (abs.)’,Lunar Science VII, The Lunar Science Institute, Houston.Google Scholar
  65. Kaula, W. M.: 1977, ‘On the origin of the Moon, with emphasis on bulk composition’,Proc. Eighth Lunar Sci. Conf., Pergamon Press, New York, 321–331.Google Scholar
  66. Keldysh, M. W.: 1977, ‘Venus exploration with the Venera 9 and Venera 10 spacecraft’,Icarus 30, 605–625.Google Scholar
  67. Lachenbruch, A. H.: 1968, ‘Preliminary geothermal model of the Sierra Nevada’,J. Geophys. Res. 73, 6977.Google Scholar
  68. Lammlein, D., Latham, G., Dorman, J., Nakamura, Y., and Ewing, M.: 1974, ‘Lunar seismicity, structure and tectonics’,Rev. Geophys. Space Phys. 12, 1–22.Google Scholar
  69. Langseth, M. G., Jr., Clark, S. P., Jr., Chute, J. L., Jr., Keihm, S. J., and Wechsler, A. E.: 1972, ‘The Apollo 15 lunar heat-flow measurements’,The Moon 4, 390–410.Google Scholar
  70. Langseth, M. G., Chute, J. L., and Keihm, S.: 1973, ‘Direct measurements of heat flow from the Moon (abs.)’,Lunar Science IV, 455–456, The Lunar Science Institute, Houston.Google Scholar
  71. Langseth, M. G., Keihm, S. J., and Peters, K.: 1976, ‘Revised lunar heat flow values’,Proc. Seventh Lunar Sci. Conf., 3143–3171, Pergamon Press.Google Scholar
  72. Latham, G., Ewing, M., Dorman, J., Lammlein, D., Press, F., Toksöz, N., Sutton, G., Duennebier, F., and Nakamura, Y.: 1972, ‘Moonquakes and lunar tectonism’,The Moon 4, 373–382.Google Scholar
  73. Latham, G., Dorman, J., Duennebier, F., Ewing, M., Lammlein, D., and Nakamura, Y.: 1973, ‘Moonquakes, meteroids, and the state of the lunar interior (abs.)’,Lunar Science IV, 457–459, The Lunar Science Institute, Houston.Google Scholar
  74. Lax, P. D. and Richtmyer, R. D.: 1956, ‘Survey of the stability of linear finite difference equations’,Comm. Pure. Appl. Math. 9, 267.Google Scholar
  75. Lee, T., Papanastassiou, D. A., and Wasserburg, G. J.: 1976, ‘Demonstration of26Mg excess in Allende and evidence for26Al,Geophys. Res. Lett. 3, 109–112.Google Scholar
  76. Lee, W. H. K.: 1968, ‘Effects of selective fusion on the thermal history of the Moon, Mars and Venus’,Earth Planet. Sci. Lett. 4, 277.Google Scholar
  77. Levin, B. J.: 1962, ‘Thermal history of the Moon’, InThe Moon, (A. Kopal and Z. K. Mikhailov, eds.), p. 157, Academic Press, New York.Google Scholar
  78. Lewis, J. S.: 1971, ‘Consequences of the presence of sulfur in the core of the Earth’,Earth Planet. Sci. Lett. 11, 130.Google Scholar
  79. Lewis, J. S.: 1972, ‘Metal/silicate fractionation in the solar system’,Earth Planet. Sci. Lett. 15, 286.Google Scholar
  80. Liu, L. and Bassett, W. A.: 1975, ‘The Melting of iron up to 200 kilobars’,J. Geophys. Res. 80, 3777–3782.Google Scholar
  81. LSPET: 1969,Science 165, 1211.Google Scholar
  82. LSPET: 1972,Science 175, 363.Google Scholar
  83. LSPET: 1973,Science 179, 23.Google Scholar
  84. Lubimova, H.: 1958, ‘Thermal history of the Earth with consideration of the variable thermal conductivity of its mantle’,Geophys. J. 1, 115.Google Scholar
  85. MacDonald, G. J. F.: 1959, ‘Calculations on the thermal history of the Earth’,J. Geophys. Res. 64, 1967–2000.Google Scholar
  86. MacDonald, G. J. F.: 1963, ‘The deep structure of continents’,Rev. Geophys. 1, 587.Google Scholar
  87. Maderazzo, M.: 1977, ‘The Viking I inorganic analysis experiments: interpretation for petrologic information’, M.S. Thesis, MIT, Cambridge.Google Scholar
  88. Majeva, S. V.: 1969, ‘The thermal history of the terrestrial planets’,Astrophys. Lett. 4, 11.Google Scholar
  89. Malin, M. G.: 1976, Ph.D. Thesis, Calif. Inst. Tech., Pasadena.Google Scholar
  90. Malin, M. C. and Saunders, R. S.: 1977, ‘Surface of Venus: evidence of diverse landforms from radar observations’,Science 196, 987–990.Google Scholar
  91. Mason, B.: 1973, ‘An overview of geological results from Mariner 9’,J. Geophys. Res. 78, 4009–4030.Google Scholar
  92. Masursky, H., Boyce, J. B., Dial, A. L., Schaber, G. G., and Strobell, M. E.: 1977, ‘Classification and time of formation of Martian channels based on Viking data’,J. Geophys. Res. 82, 4016–4038.Google Scholar
  93. McConnell, R. K., Jr., McClaine, L. A., Lee, D. W., Aronson, J. R., and Allen, R. V.: 1967, ‘A model for planetary igneous differentiation’,Rev. Geophys. 5, 121.Google Scholar
  94. McConnell, R. K., Jr., and Gast, P. W.: 1972, ‘Lunar thermal history revisited’,The Moon 5, 41–51.Google Scholar
  95. McCord, T. B. and Gaffey, M. J.: 1974, ‘Asteroids: surface composition from reflection spectroscopy”,Science 186, 352–355.Google Scholar
  96. McElroy, M. B., Yung, Y. L., and Nier A. O.: 1976, ‘Isotopic composition of nitrogen: implications for the past history of Mars' atmosphere’,Science 194, 70–72.Google Scholar
  97. McKenzie, D. P. and Weiss, N.: 1975, ‘Speculations on the thermal history of the Earth’,Geophys. J. Roy. Astron. Soc. 42, 131–174.Google Scholar
  98. Metzger, A. E., Trombka, J. I., Peterson, L. E., Reedy, R. C., and Arnold, J. R.: 1972, ‘A first look at the lunar orbital gamma-ray data’, InProc. Third Lunar Sci. Conf. 3, (D. R. Criswell ed.), frontispiece, MIT Press, Cambridge.Google Scholar
  99. Milton, D. J.: 1973, ‘Water and processes of degradation in the Martian landscape’,J. Geophys. Res. 78, 4037–4047.Google Scholar
  100. Mizutani, H., Matsui, T., and Takeuchi, J.: 1972, ‘Accretion process of the Moon’,The Moon 4, 476–489.Google Scholar
  101. Morrison, D.: 1976, ‘The densities and bulk compositions of Ceres and Vesta’,Geophys. Res. Lett. 3, 701–704.Google Scholar
  102. Murray, B. C., Soderblom, L. A., Cutts, J. A., Sharp, R. P., Milton, D. J., and Leighton, R. B.: 1972, ‘Geological framework of the south polar region of Mars’,Icarus 17, 328–345.Google Scholar
  103. Mutch, T. A. and Head, J. W.: 1975, ‘The geology of Mars: a brief review of some recent results’,Rev. Geophys. Space Phys. 13, 411–416.Google Scholar
  104. Mutch, T. A. and Saunders, R. S.: 1976, ‘The geologic development of Mars: a review,’,Space Sci. Rev. 19, 3–57.Google Scholar
  105. Mutch, T. A., Arvidson, R. E., Head, J. W. II, Jones, K. L., and Saunders, R. S.: 1976,The Geology of Mars, Princeton Univ. Press, Princeton.Google Scholar
  106. Nakamura, Y., Lammlein, D., Latham, G., Ewing, M., Dorman, J., Press, F., and Toksöz, N.: 1973, ‘New seismic data on the state of the deep lunar interior’,Science 181, 49.Google Scholar
  107. Nakamura, Y., Latham, G., Lammlein, D., Ewing, M., Duennebier, F., and Dorman, J.: 1974, ‘Deep lunar interior inferred from recent seismic data’,Geophys. Res. Lett. 1, 137–140.Google Scholar
  108. Ness, N. F., Behannon, K. W., Lepping, R. P., and Whang Y. C.: 1975, ‘The magnetic field of Mercury’,J. Geophys. Res. 80, 2708–2716.Google Scholar
  109. Okal, E. A. and Anderson, D. L.: 1977, ‘Theoretical models for Mars and their seismic properties’, submitted toIcarus.Google Scholar
  110. O'Kelley, G. D., Eldridge, J. S., Schonfeld, E., and Bell, P. R.: 1970, ‘Primordial radionuclide abundances, solar proton and cosmic-ray effects and ages of Apollo 11 lunar samples by non-destructive gamma ray spectrometry’, InProc. Apollo 11 Lunar Sci. Conf. 2, 1403–1423, Pergamon Press, New York.Google Scholar
  111. Olhoeft, G. R., Frisillo, A. L., Strangway D. W., and Sharpe, H.: 1973, ‘Electrical properties of lunar solid samples (abs.)’,Lunar Science IV, 575, The Lunar Science Institute, Houston.Google Scholar
  112. Owen, T. and Biemann, K.: 1976, ‘Composition of the atmosphere at the surface of Mars: detection of Argon-36 and preliminary analysis’,Science 193, 801–803.Google Scholar
  113. Papanastassiou, D. A. and Wasserburg, G. J.: 1971a, ‘Lunar chronology and evolution from Rb−Sr studies of Apollo 11 and 12 samples’,Earth Planet. Sci. Lett. 11, 37–62.Google Scholar
  114. Papanastassiou, D. A. and Wasserburg, G. J.: 1971b, ‘Rb−Sr ages of igneous rocks from the Apollo 14 mission and the age of the Fra Mauro formation’,Earth Planet. Sci. Lett. 12, 36–48.Google Scholar
  115. Parmentier, E. M. and Torrance, K. E.: 1975, ‘Kinematically consistent velocity fields for hydrodynamic calculations in curvilinear coordinates’,J. Comp. Phys. 19, 404–417.Google Scholar
  116. Parmentier, E. M., Turcotte, D. L., and Torrance, K. E.: 1976, ‘Studies of finite-amplitude non-Newtonian thermal convection with application to convection in the Earth's mantle’,J. Geophys. Res. 81, 1839–1846.Google Scholar
  117. Perkins, R. W., Rancitelli, L. A., Cooper, J. A., Kaye, J. H., and Wogman, N. A.: 1970, ‘Cosmogenic and primordial radionuclide measurements in Apollo 11 lunar samples by nondestructive analysis’, InProc. Apollo 11 Lunar Sci. Conf. 2, 1455–1469, Pergamon Press, New York.Google Scholar
  118. Phillips, R. J. and Saunders, R. S.: 1975, ‘The isostatic state of Martian topography’,J. Geophys. Res. 80, 2893–2897.Google Scholar
  119. Reasenberg, R. D.: 1977, ‘The moment of inertia and isostasy of Mars’,J. Geophys. Res. 82, 369–375.Google Scholar
  120. Reynolds, R. T., Fricker, P. E., and Summers, A. L.: 1966, ‘Effects of melting upon thermal modes of the Earth’,J. Geophys. Res. 71 573–582.Google Scholar
  121. Reynolds, R. T., Fricker, P. E., and Summers, A. L.: 1972, ‘Thermal history of the Moon’, InThermal Characteristics of the Moon, (J. W. Lucas ed.), pp. 303–337, MIT Press, Cambridge.Google Scholar
  122. Ringwood, A. E. and Essene, E.: 1970, ‘Petrogenesis of lunar basalts and the internal constitution of the Moon’,Science 167, 607–610.Google Scholar
  123. Ringwood, A. E.: 1977, ‘Mare basalt petrogenesis and the composition of the lunar interior’,The Moon, A New Appraisal, The Royal Soc., London, 577–586.Google Scholar
  124. Ringwood, A. E. and Anderson, D. L.: 1977, ‘Earth and Venus: A comparative study’,Icarus 30, 243–253.Google Scholar
  125. Runcorn, S. K.: 1962, ‘Convection in the Moon’,Nature 195 1150–1151.Google Scholar
  126. Runcorn, S. K.: 1967, ‘Convection in the Moon and the existence of a lunar core’,Proc. Roy. Soc. London, Ser. A,296, 270–284.Google Scholar
  127. Safronov, V. S.: 1977, ‘The heating of the Earth during its formation’,Icarus, in press.Google Scholar
  128. Schaeffer, O. A. Husain, L. and Schaeffer, G. A.: 1976, ‘Ages of highland rocks: the chronology of lunar basin formation revisited’,Proc. Seventh Lunar Sci. Conf. 2067–2092.Google Scholar
  129. Schatz, J. F. and Simmons, G.: 1972, ‘Thermal conductivity of Earth materials at high temperatures’,J. Geophys. Res. 77, 6966–6983.Google Scholar
  130. Schonfeld, E.: 1977, ‘Martian volcanism (abs.)’,Lunar Science VIII, 843–845, The Lunar Science Institute, Houston.Google Scholar
  131. Schramm, D. N., Tera, F., and Wasserburg, G. J.: 1970, ‘The isotopic abundance of Mg26 and limits of Al26 in the early solar system’,Earth Planet. Sci. Lett. 10, 44–59.Google Scholar
  132. Sharp, R. P. and Malin, M. C.: 1975, ‘Channels on Mars’,Geol. Soc. Am. Bull. 86, 593–609.Google Scholar
  133. Schubert, G., Turcotte, D. L., and Oxburgh, E. R.: 1969, ‘Stability of planetary interiors’,Geophys. J. R. Astr. Soc. 18, 441.Google Scholar
  134. Sharpe, H. N. and Strangway, D. W.: 1976, ‘The magnetic field of Mercury and models of thermal evolution’,Geophys. Res. Lett. 3, 285–288.Google Scholar
  135. Siegfried, R. W. and Solomon, S. C.: 1974, ‘Meicury: internal structure and thermal evolution’,Icarus 23, 192–205.Google Scholar
  136. Silver, L. T.: 1970, ‘Uranium-thorium-lead isotopes in some Tranquility Base samples and their implications for lunar history’, InProc. Apollo 11 Lunar Sci. Conf. 2, (A. A. Levinson ed.), pp. 1533–1574, Pergamon Press, New York.Google Scholar
  137. Silver, L. T.: 1973, ‘Uranium-thorium-lead isotopic characteristics (abs.)’,Lunar Science IV, 673–674, The Lunar Science Institute, Houston.Google Scholar
  138. Singer, S. F.: 1970, ‘Origin of the Moon by capture and its consequences’,EOS, Trans. Am. Geophys. Un. 51, 637–640.Google Scholar
  139. Soderblom, L. A., Condit, C. D., West, R. A., Herman, B. M., and Kreidler, T. J.: 1974, ‘Martian planetwide crater distributions: implications for geologic history and surface processes’,Icarus 22, 239–263.Google Scholar
  140. Solomon, S. C. and Toksöz, M. N.: 1973, ‘Internal constitution and evolution of the Moon’,Phys. Earth Planet. Int. 7, 15–38.Google Scholar
  141. Solomon, S. C.: 1976, ‘Some aspects of core formation in Mercury’,Icarus 28, 509–521.Google Scholar
  142. Solomon, S. C. and Chaiken, J.: 1976, ‘Thermal expansion and thermal stress in the Moon and terrestrial planets: clues to early thermal history’,Proc. Seventh Lunar Sci. Conf. 3229–3243.Google Scholar
  143. Solomon, S. C.: 1977, ‘The relationship between crustal tectonics and internal evolution in the Moon and Mercury’,Phys. Earth Planet. Int.,15, 135–145.Google Scholar
  144. Sonett, C. P. and Colburn, D. S.: 1970, ‘The role of accretionally and electrically inverted thermal profiles in lunar evolution’,The Moon 1, 483–484.Google Scholar
  145. Sonett, C. P., Colburn, D. S., Dyal, P., Parkin, C. W., Smith, B. F., Schubert, G., and Schwartz, K.: 1971, ‘Lunar electrical conductivity profile’,Nature 230, 359–362.Google Scholar
  146. Sonett, C. P., Smith, B. F., Colburn, D. S., Schubert, G., and Schwartz, K.: 1972, ‘The induced magnetic field of the Moon: conductivity profiles and inferred temperature’, InProc. Third Lunar Sci. Conf. 3, (D. R. Criswell ed.), pp. 2309–2336, MIT Press, Cambridge.Google Scholar
  147. Sonett, C. P., Colburn, D. S. Schwartz, K., and Keil, K.: 1970, ‘The Melting of asteroidal parent bodies by unipolar dynamo induction from a primordial T-Tauri sun’,Astrophys. Space Sci. 7, 446–488.Google Scholar
  148. Stocker, R. L. and Ashby, M. F.: 1973, ‘On the rheology of the upper mantle’,Rev. Geophys. Space Phys. 11, 391–426.Google Scholar
  149. Strangway, D. W. and Sharpe, H. N.: 1975, ‘A model of lunar evolution’,The Moon 12, 369–397.Google Scholar
  150. Tatsumoto, M., Hedge, C. E., Doe, B. R., and Unruh, D. M.: 1972, ‘U−Th−Pb and Rb−Sr measurements on some Apollo 14 lunar samples’,Proc. Third Lunar Sci. Conf. 2, (D. Heymann ed.), pp. 1531–1555, MIT Press, Cambridge.Google Scholar
  151. Tatsumoto, M., Numes, P. D., and Knight, R. J.: 1973, U−Th−Pb systematics of some Apollo 16 samples (abs.)’,Lunar Science IV, 705–707, The Lunar Science Institute, Houston.Google Scholar
  152. Tera, F., Papanastassiou, D. A., and Wasserburg, G. J.: 1973, ‘A lunar cataclysm at 3.95 ae and the structure of the lunar crust’, InLunar Science IV, (J. W. Chamberlain and C. Watkins eds.), pp. 723–725, The Lunar Science Institute, Houston.Google Scholar
  153. Tera, F. and Wasserburg, G. J.: 1976, ‘Lunar ball games and other sports (abs.)’,Lunar Science VII, 858–860, The Lunar Science Institute, Houston.Google Scholar
  154. Toksöz, M. N., Press, F., Anderson, F., Dainty, A., Latham, G., Ewing, M., Dorman, J., Lammlein, D., Sutton, G., Duennebier, F., and Nakamura, Y.: 1972a, ‘Lunar crust: structure and composition’,Science 176, 1012–1016.Google Scholar
  155. Toksöz, M. N., Press, F., Dainty, A., Anderson, K., Lathom, G., Ewing, M., Dorman, J., Lammlein, D., Sutton, G., and Duennebier, F.: 1972b, ‘Structure, composition and properties of lunar crust’,Proc. Third Lunar Sci. Conf. 3, 2526–2544, MIT Press, Cambridge.Google Scholar
  156. Toksöz, M. N., Solomon, S. C., Minear, J. W., and Johnston, D. H.: 1972c, ‘Thermal evolution of the Moon’,The Moon 4, 190 and5, 249.Google Scholar
  157. Toksöz, M. N. and Solomon, S. C.: 1973, ‘Thermal history and evolution of the Moon’,The Moon 7, 251–278.Google Scholar
  158. Toksöz, M. N., Dainty, A. M., Solomon, S. C., and Anderson, K. R.: 1973, ‘Velocity structure and evolution of the Moon (abs.)’,Lunar Science IV, 734–736, The Lunar Science Institute, Houston.Google Scholar
  159. Toksöz, M. N., Dainty, A. M., Solomon, S. C., and Anderson, K. R.: 1974, ‘Structure of the Moon’,Rev. Geophys. Space Phys. 12, 539–567.Google Scholar
  160. Toksöz, M. N. and Johnston, D. H.: 1974, ‘The evolution of the Moon’,Icarus 21, 389–414.Google Scholar
  161. Toksöz, M. N. and Johnston, D. H.: 1976, ‘The evolution of the Moon and terrestrial planets’,Proc. Soviet-American Conf. on Cosmochemistry of the Moon and Planets, Moscow, 4–8 June 1974, in press.Google Scholar
  162. Toksöz, M. N., Hsui, A. T., and Johnston, D. H.: 1976, ‘Evolution of the Moon — revisited (abs.)’,Lunar Science VII, 867–869, The Lucar Science Institute, Houston.Google Scholar
  163. Toksöz, M. N., Goins, N. R., and Cheng, C. H.: 1977, ‘Moonquakes: mechanisms and relation to tidal stress’,Science 196, 979–981.Google Scholar
  164. Toksöz, M. N. and Hsui, A. T.: 1978, ‘Thermal history and evolution of Mars’,Icarus, in press.Google Scholar
  165. Torrance, K. E.: 1968, ‘Comparison of finite-difference computations of natural convection’,J. Res. Nat. Bur. Stand. 72B, 281–301.Google Scholar
  166. Torrance, K. E. and Turcotte, D. L.: 1971, ‘Thermal convection with large viscosity variations’,J. Fluid Mech. 47, 113–125.Google Scholar
  167. Tozer, D. C.: 1972a, ‘The Moon's thermal state and an interpretation of the lunar electrical conductivity distribution’,The Moon 5, 90–105.Google Scholar
  168. Tozer, D. C.: 1972b, ‘The present thermal state of the terrestrial planets’,Phys. Earth Planet. Int. 6, 182–197.Google Scholar
  169. Tozer, D. C.: 1974, ‘The internal evolution of planetary size objects’,The Moon 9, 167–182.Google Scholar
  170. Turcotte, D. L. and Oxburgh, E. R.: 1969, ‘Convection in a mantle with variable physical properties’,J. Geophys. Res. 74, 1458.Google Scholar
  171. Turcotte, D. L., Hsui, A. T., Torrance, K. E., and Oxburgh, E. R.: 1972, ‘Thermal structure of the Moon’,J. Geophys. Res. 77, 6931–6939.Google Scholar
  172. Turcotte, D. L., Torrance, K. E., and Hsui, A. T.: 1973, ‘Convection in the Earth's mantle’,Methods. Comput. Phys. 13, 431–454.Google Scholar
  173. Urey, H. C.: 1951, ‘The origin and development of the Earth and other terrestrial planets’,Geochim. Cosmochim. Acta 1, 209–277.Google Scholar
  174. Urey, H. C.: 1952,The Planets, Their Origin and Development, Yale Univ. Press, New Haven.Google Scholar
  175. Urey, H. C.: 1955, ‘The cosmic abundances of potassium, uranium and thorium and the heat balance of the Earth, Moon and Mars’,Proc. Natl. Acad. Sci. U.S. 41, 127–144.Google Scholar
  176. Urey, H. C.: 1957, ‘Boundary conditions for theories of the origin of the solar system’, InPhysics and Chemistry of the Earth,2, (L. H. Ahrens, F. Press, K. Rankama and S. K. Runcorn eds.), pp. 46–76, Pergamon Press, New York.Google Scholar
  177. Urey, H. C.: 1962, ‘Origin and history of the Moon’, InPhysics and Astronomy of the Moon’, 1st ed., (Z. Kopal ed.), p. 481, Academic Press, New York.Google Scholar
  178. Urey, H. S. and MacDonald, G. J. F.: 1971, ‘Origin and history of the Moon’, InPhysics and Astronomy of the Moon, 2nd ed., (Z. Kopal, ed.), pp. 213–289, Academic Press, New York.Google Scholar
  179. Usselman, T. M.: 1975, ‘Experimental approach to the state of the core: Part I. The liquidus relations of the Fe-rich protion of the Fe−Ni−S system from 30–100 kb,Am. J. Sci. 275, 278–290.Google Scholar
  180. Vinogradov, A. P., Surkov, Yu. A., and Kirnozov, F. F.: 1973, ‘The content of uranium, thorium and potassium in the rocks of Venus as measured by Venera 8’,Icarus 20, 253–259.Google Scholar
  181. Wänke, H., Baddenhausen, H., Dreibus, G., Quijano-Rico, M., Palme, H., Spettel, B., and Teschke, F.: 1973, ‘Multi-element analysis of Apollo 16 samples and about the composition of the whole Moon (abs.)’,Lunar Science IV, 761–763, 767–769, The Lunar Science Institute, Houston.Google Scholar
  182. Wasserburg, G. J. and Papanastassiou, D. A.: 1971, ‘Age of an Apollo 15 mare basalt; lunar crust and mantle evolution’,Earth Planet. Sci. Lett. 13, 97–104.Google Scholar
  183. Wasserburg, G. J., Papanastassiou, D. A., Tera, F., and Huneke, J. C.: 1977, ‘Outline of a lunar chronology’,The Moon, A New Appraisal, The Royal Soc., London, 7–22.Google Scholar
  184. Weertman, J.: 1970, ‘The creep strength of the Earth's mantle’,Rev. Geophys. Space Phys. 8, 145–168.Google Scholar
  185. Weertman, J. and Weertman, J. R.: 1975, ‘High temperature creep of rock and mantle viscosity’,Ann. Rev. Earth Planet. Sci. 3, 293–315.Google Scholar
  186. Weidenschilling, S. J.: 1974, ‘A model for accretion of the terrestrial planets’,Icarus 22, 426–435.Google Scholar
  187. Weidenschilling, D. J.: 1976, ‘Accretion of the terrestrial planets II’,Icarus 27, 161–170.Google Scholar
  188. Wetherill, G. W.: 1976, ‘The role of large bodies in the formation of the Earth and Moon’,Proc. Seventh Lunar Sci. Conf. 3245–3257, Pergamon Press, New York.Google Scholar
  189. Wetherill, G. W.: 1977, ‘Dynamic accretion model for the terrestrial planets (abs.)’,EOS, Trans. Am. Geophys. Un. 58, 428.Google Scholar
  190. Wiskerchen, M. J. and Sonett, C. P.: 1977, ‘A lunar metal core?’,Proc. Eighth Lunar Sci. Conf., Pergamon Press, New York, 515–535.Google Scholar
  191. Wood, J. A., Dickey, J. S., Jr., Marvin, U. B., and Powell, B. N.: 1970, ‘Lunar anorthosites’,Science 167, 602.Google Scholar
  192. Wood, J. A.: 1972, ‘Thermal history and early magmatism in the Moon’,Icarus 16, 229–240.Google Scholar
  193. Young, R. E. and Schubert, G.: 1974, ‘Temperatures inside Mars: is the core liquid or solid?’,Geophys. Res. Lett. 1, 157–160.Google Scholar
  194. Young, R. E.: 1974, ‘Finite-amplitude thermal convection in a spherical shell’,J. Fluid Mech. 63, 695–721.Google Scholar

Copyright information

© D. Reidel Publishing Company 1978

Authors and Affiliations

  • M. Nafi Toksöz
    • 1
  • Albert T. Hsui
    • 1
  • David J. Johnston
    • 1
  1. 1.Department of Earth and Planetary SciencesMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations