Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Time-dependent propagation of high energy laser beams through the atmosphere

Abstract

The computation of time-dependent three-space-dimensional laser beam propagation is described. The methods are applicable to the propagation of high energy laser beams through the atmosphere in the presence of a horizontal wind and turbulence for most situations of interest. Possible cases are propagation of cw beams through stagnation zones, multi-pulse propagation, including the self-consistent treatment of pulse self-blooming, and propagation involving transonic slewing. The solution of the Maxwell wave equation in Fresnel approximation is obtained by means of a discrete Fourier transform method, which, surprisingly, gives excellent results for diffraction problems. The latter provide a stringent test for the accuracy of any solution method. Considerable use is also made of discrete Fourier transform methods in solving the hydrodynamic equations. The treatment of turbulence is based on the generation of random phase screens at each calculation step along the propagation path. In a time-dependent calculation the random phase screens can be either made to move with the wind at a given propagation position or generated anew for each successive time.

This is a preview of subscription content, log in to check access.

Refereces

  1. 1.

    A. H. Aitken, J. H. Hayes, P. B. Ulrich: “Propagation of High Energy 10.6 Micron Laser Beams Through The Atmosphere”; U. S. Naval Research Laboratory, Washington, D. C., Rept. 7293 (1971); P. B. Ulrich, J. H. Hayes, J. H. Hancock, J. T. Ulrich: “Documentation of PROPE,A Computer Program for Propagation of High Power Laser Beams Through Absorbing Media”; U. S. Naval Research Laboratory, Washington, D. C., Rept. 7681 (1974)

  2. 2.

    J. Hermann, L. C. Bradley: “Numerical Calculation of Light Propagation”; MIT Lincoln Laboratory, Cambridge, Mass., Rept. LTP-10 (1971)

  3. 3.

    P. B. Ulrich: “A Numerical Calculation of Thermal Blooming of Pulsed Focused Laser Beams”; U. S. Naval Research Laboratory, Washington, D. C., Rept. 7382 (1971)

  4. 4.

    P. B. Ulrich, J. Wallace, J. Opt. Soc. Am.63, 8 (1973)

  5. 5.

    H. Kleiman, K. W. O'Neil, Appl. Phys. Letters23, 43 (1973)

  6. 6.

    L. C. Bradley: “Simulation of Atmospheric Index Fluctuations”; Lincoln Laboratory, Cambridge, Mass. (preprint)

  7. 7.

    W. P. Brown, Jr.: “High Energy Laser Propagation”; Hughes Research Laboratory, Rept. on contract N00014-B-C-0460 (1973)

  8. 8.

    A. Edwards: Lawrence Livermore Laboratory, Rept. UCIR-902 (1975)

  9. 9.

    L. C. Bradley: “Thermal Blooming in the Transonic Regime”; MIT Lincoln Laboratory, Cambridge, Mass., Rept. LTP-24 (1974)

  10. 10.

    J. A. Fleck, Jr.: J. Comp. Phys.16, 324 (1974)

  11. 11.

    M. D. Feit, J. A. Fleck, Jr.: Bull. Am. Phys. Soc. (Series II)19, 962 (1974)

  12. 12.

    An unsymmetrized exponential transformation was used by, J. Hermann and L. C. Bradley: “Numerical Calculation of Light Propagation”; MIT Lincoln Laboratory, Cambridge, Mass., 1971)

  13. 13.

    V. I. Talanov: JETP Letters11, 799 (1970) [ZhETP Pis. Red.11, 303 20 (March 1969)]

  14. 14.

    The DFT method of solving the propagation equation is also employed by other workers, e. g. H. J. Breaux: “An Analysis of Mathematical Transformations and a Comparison of Numerical Techniques for Computation of High Energy CWLaser Propagation in an Inhomogeneous Medium”; Ballistic Research Laboratories, Rept. No. 1723 (1974); P. B. Ulrich: InNRL Optical Radiation Program Progress Report”; U.S. Naval Research Laboratory, Washington, D. C., Memorandum Report 2874 (1974)

  15. 15.

    W. T. Cochran, J. W. Cooley, D. L. Favin, H. D. Helms, R. A. Kaenel, W. W. Lang, G. C. Moling, Jr., D. E. Nelson, C. M. Rader, P. D. Welch: Proc. IEEE55, 1664 (1967)

  16. 16.

    A. J. Campillo, J. E. Pearson, S. L. Shapiro, N. J. Terrell, Jr.: Appl. Phys. Letters23, 85 (1973)

  17. 17.

    N.J. Terrell, Jr.: Los Alamos Scientific Laboratory, Los Alamos, N. M., private communication (1975)

  18. 18.

    R. D. Richtmyer, K. W. Morton:Difference Methods for Initial Value Problems, (Interscience, New York 1967)

  19. 19.

    M. G. Rusbridge: J. Comp. Phys.2, 288 (1968)

  20. 20.

    We are indebted to E. H. Canfield, Jr., Lawrence Livermore Laboratory, for these more accurate expressions

  21. 21.

    F. H. Harlow, A. A. Amsden: J. Comp. Phys.8, 197 (1971)

  22. 22.

    Results for the thermal blooming of a single collimated pulse are presented in [4] P. B. Ulrich, J. Wallace, J. Opt. Soc. Am.63, 8 (1973)

  23. 23.

    A nonlinear solution for the flow near “March=1” as a function of Mach number has been derived by J. H. Hayes: Appl. Opt.13, 2072 (1972)

  24. 24.

    J. N. Hayes: unpublished report, U. S. Naval Research Laboratory, Washington, D. C.

  25. 25.

    C. B. Hogge, R. R. Butts: “Propagation Effects of a Slewed Beam with Transverse Wind Null Spots”; Air Force Weapons Laboratory, Kirkland AFB, N. M., Rept. AFWL-TR-73-76 (1973)

  26. 26.

    R. T. Brown, P. J. Berger, F. G. Gebhardt, H. C. Smith: “Influence of Dead Zones and Transonic Slewing on Thermal Blooming”; United Aircraft Research Laboratory, East Hartford, Conn., Rept. N921724-7 (1974)

  27. 27.

    P. J. Berger, F. G. Gebhardt, D. C. Smith: “Thermal Blooming Due to a Stagnation Zone in a Slewed Beam”; United Aircraft Research Laboratory, East Hartford, Conn., Rept. N921724-12 (1974)

Download references

Author information

Additional information

This work was done under contract to the Advanced Research Projects Agency of the Department of Defense, the Army Missile Command, Huntsville, Alabama, and the U.S. Energy Research and Development Administration.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fleck, J.A., Morris, J.R. & Feit, M.D. Time-dependent propagation of high energy laser beams through the atmosphere. Appl. Phys. 10, 129–160 (1976). https://doi.org/10.1007/BF00896333

Download citation

PACS Code

  • 42.10