Applied physics

, Volume 10, Issue 2, pp 129–160

Time-dependent propagation of high energy laser beams through the atmosphere

  • J. A. FleckJr.
  • J. R. Morris
  • M. D. Feit
Contributed Papers

Abstract

The computation of time-dependent three-space-dimensional laser beam propagation is described. The methods are applicable to the propagation of high energy laser beams through the atmosphere in the presence of a horizontal wind and turbulence for most situations of interest. Possible cases are propagation of cw beams through stagnation zones, multi-pulse propagation, including the self-consistent treatment of pulse self-blooming, and propagation involving transonic slewing. The solution of the Maxwell wave equation in Fresnel approximation is obtained by means of a discrete Fourier transform method, which, surprisingly, gives excellent results for diffraction problems. The latter provide a stringent test for the accuracy of any solution method. Considerable use is also made of discrete Fourier transform methods in solving the hydrodynamic equations. The treatment of turbulence is based on the generation of random phase screens at each calculation step along the propagation path. In a time-dependent calculation the random phase screens can be either made to move with the wind at a given propagation position or generated anew for each successive time.

PACS Code

42.10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refereces

  1. 1.
    A. H. Aitken, J. H. Hayes, P. B. Ulrich: “Propagation of High Energy 10.6 Micron Laser Beams Through The Atmosphere”; U. S. Naval Research Laboratory, Washington, D. C., Rept. 7293 (1971); P. B. Ulrich, J. H. Hayes, J. H. Hancock, J. T. Ulrich: “Documentation of PROPE,A Computer Program for Propagation of High Power Laser Beams Through Absorbing Media”; U. S. Naval Research Laboratory, Washington, D. C., Rept. 7681 (1974)Google Scholar
  2. 2.
    J. Hermann, L. C. Bradley: “Numerical Calculation of Light Propagation”; MIT Lincoln Laboratory, Cambridge, Mass., Rept. LTP-10 (1971)Google Scholar
  3. 3.
    P. B. Ulrich: “A Numerical Calculation of Thermal Blooming of Pulsed Focused Laser Beams”; U. S. Naval Research Laboratory, Washington, D. C., Rept. 7382 (1971)Google Scholar
  4. 4.
    P. B. Ulrich, J. Wallace, J. Opt. Soc. Am.63, 8 (1973)Google Scholar
  5. 5.
    H. Kleiman, K. W. O'Neil, Appl. Phys. Letters23, 43 (1973)CrossRefGoogle Scholar
  6. 6.
    L. C. Bradley: “Simulation of Atmospheric Index Fluctuations”; Lincoln Laboratory, Cambridge, Mass. (preprint)Google Scholar
  7. 7.
    W. P. Brown, Jr.: “High Energy Laser Propagation”; Hughes Research Laboratory, Rept. on contract N00014-B-C-0460 (1973)Google Scholar
  8. 8.
    A. Edwards: Lawrence Livermore Laboratory, Rept. UCIR-902 (1975)Google Scholar
  9. 9.
    L. C. Bradley: “Thermal Blooming in the Transonic Regime”; MIT Lincoln Laboratory, Cambridge, Mass., Rept. LTP-24 (1974)Google Scholar
  10. 10.
    J. A. Fleck, Jr.: J. Comp. Phys.16, 324 (1974)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    M. D. Feit, J. A. Fleck, Jr.: Bull. Am. Phys. Soc. (Series II)19, 962 (1974)Google Scholar
  12. 12.
    An unsymmetrized exponential transformation was used by, J. Hermann and L. C. Bradley: “Numerical Calculation of Light Propagation”; MIT Lincoln Laboratory, Cambridge, Mass., 1971)Google Scholar
  13. 13.
    V. I. Talanov: JETP Letters11, 799 (1970) [ZhETP Pis. Red.11, 303 20 (March 1969)]Google Scholar
  14. 14.
    The DFT method of solving the propagation equation is also employed by other workers, e. g. H. J. Breaux: “An Analysis of Mathematical Transformations and a Comparison of Numerical Techniques for Computation of High Energy CWLaser Propagation in an Inhomogeneous Medium”; Ballistic Research Laboratories, Rept. No. 1723 (1974); P. B. Ulrich: InNRL Optical Radiation Program Progress Report”; U.S. Naval Research Laboratory, Washington, D. C., Memorandum Report 2874 (1974)Google Scholar
  15. 15.
    W. T. Cochran, J. W. Cooley, D. L. Favin, H. D. Helms, R. A. Kaenel, W. W. Lang, G. C. Moling, Jr., D. E. Nelson, C. M. Rader, P. D. Welch: Proc. IEEE55, 1664 (1967)Google Scholar
  16. 16.
    A. J. Campillo, J. E. Pearson, S. L. Shapiro, N. J. Terrell, Jr.: Appl. Phys. Letters23, 85 (1973)CrossRefGoogle Scholar
  17. 17.
    N.J. Terrell, Jr.: Los Alamos Scientific Laboratory, Los Alamos, N. M., private communication (1975)Google Scholar
  18. 18.
    R. D. Richtmyer, K. W. Morton:Difference Methods for Initial Value Problems, (Interscience, New York 1967)MATHGoogle Scholar
  19. 19.
    M. G. Rusbridge: J. Comp. Phys.2, 288 (1968)CrossRefGoogle Scholar
  20. 20.
    We are indebted to E. H. Canfield, Jr., Lawrence Livermore Laboratory, for these more accurate expressionsGoogle Scholar
  21. 21.
    F. H. Harlow, A. A. Amsden: J. Comp. Phys.8, 197 (1971)CrossRefGoogle Scholar
  22. 22.
    Results for the thermal blooming of a single collimated pulse are presented in [4] P. B. Ulrich, J. Wallace, J. Opt. Soc. Am.63, 8 (1973)Google Scholar
  23. 23.
    A nonlinear solution for the flow near “March=1” as a function of Mach number has been derived by J. H. Hayes: Appl. Opt.13, 2072 (1972)ADSMathSciNetGoogle Scholar
  24. 24.
    J. N. Hayes: unpublished report, U. S. Naval Research Laboratory, Washington, D. C.Google Scholar
  25. 25.
    C. B. Hogge, R. R. Butts: “Propagation Effects of a Slewed Beam with Transverse Wind Null Spots”; Air Force Weapons Laboratory, Kirkland AFB, N. M., Rept. AFWL-TR-73-76 (1973)Google Scholar
  26. 26.
    R. T. Brown, P. J. Berger, F. G. Gebhardt, H. C. Smith: “Influence of Dead Zones and Transonic Slewing on Thermal Blooming”; United Aircraft Research Laboratory, East Hartford, Conn., Rept. N921724-7 (1974)Google Scholar
  27. 27.
    P. J. Berger, F. G. Gebhardt, D. C. Smith: “Thermal Blooming Due to a Stagnation Zone in a Slewed Beam”; United Aircraft Research Laboratory, East Hartford, Conn., Rept. N921724-12 (1974)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • J. A. FleckJr.
    • 1
  • J. R. Morris
    • 1
  • M. D. Feit
    • 1
  1. 1.Lawrence Livermore LaboratoryUniversity of CaliforniaLivermoreUSA

Personalised recommendations