Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Precession of a gyroscope for the nonregular generalized finslerian metric gij = e2σ(x,y)aij(x)

  • 29 Accesses


The post-Newtonian problem of the precession of the axis of rotation of a gyroscope rotating around the earth in relation to distant stars belongs to a number of “nonclassical” verifications of the consequences of the theory of gravitation with an independent determination of the post-Newtonian parameters. A generalized Fermi-Walker transport equation is constructed and the problem of precession of a gyroscope is solved for the nonregular generalized Finslerian metric gij=e2σ(x,y)aij, where aij signifies the Riemannian metric tensor. The result contains a contribution in addition to the usual Riemannian PPN-terms, proportional to the parameter σa characterizing the dependence of σ on the speed of motion.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    H. Rund, Differential Geometry of Finsler Spaces, Springer, Berlin (1953).

  2. 2.

    G. S. Asanov, Finsler Geometry, Relativity and Gauge Theories, D. Reidel, Dordrecht (1985).

  3. 3.

    M. Hashiguchi, Ana. Stiin ale Univ. “Al. I Cuza” din Iasi,30, 69–73 (1984).

  4. 4.

    R. Miron, J. Math. Kyoto Univ.,23, 219–224 (1983).

  5. 5.

    T. Okubo, Tensor O. S.,3, 48–55 (1940).

  6. 6.

    S. Watanabe, J. Nat. Acad. Math.,1, 79–85 (1983).

  7. 7.

    R. K. Tavakol and N. vanden Bergh, Phys. Lett.,112A, 23–25 (1985).

  8. 8.

    C. W. Misner, K. S. Torne, and J. A. Wheeler, Gravitation, Freeman, San Francisco (1973).

  9. 9.

    S. Watanabe and S. Ikeda, Tensor N. S.,40, 97–102 (1983).

  10. 10.

    S. Watanabe and S. Ikeda, Tensor N. S.,39, 37–41 (1982).

  11. 11.

    C. M. Will, Theory and Experiment in Gravitational Physics, Cambridge University Press, Cambridge (1981).

Download references

Author information

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 91–95, May, 1989.

In conclusion, the author expresses deep gratitude to G. S. Asanov (MGU) for stating the problem and valuable comments.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aryngazin, A.K. Precession of a gyroscope for the nonregular generalized finslerian metric gij = e2σ(x,y)aij(x). Soviet Physics Journal 32, 398–401 (1989). https://doi.org/10.1007/BF00895325

Download citation


  • Transport Equation
  • Independent Determination
  • Distant Star