Advertisement

Soviet Physics Journal

, Volume 18, Issue 7, pp 1000–1004 | Cite as

Coherence relaxation during the diffusion of resonance radiation in media with a magnetic field

  • V. P. Afanas'ev
  • B. A. Veklenko
Article
  • 10 Downloads

Abstract

The kinetic Green's function method is used to obtain equations which describe the transport of resonance radiation in magnetic fields for arbitrary ratios between the natural widthγ, the Doppler width ΔωD, and the Zeeman splitting of the excited atomic levels. It is shown that as ΔωD/γ→0 the equations become very much simpler and in particular cases admit an exact solution. In particular, the decay of coherence in an infinite homogeneous space is characterized by five relaxation times, which are defined by a system of algebraic equations.

Keywords

Radiation Magnetic Field Coherence Relaxation Time Exact Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. Mitchell and M. Zemanskii, Resonance Radiation and Excited Atoms [Russian translation], ONTI (1937).Google Scholar
  2. 2.
    I. Barrat, J. Phys. Rad.,20, 657 (1959).Google Scholar
  3. 3.
    A. Omont, Compt. Rend. Acad. Sci.,258, 1193 (1964); E. W. Otten and A. Winnacker, Phys. Lett.,23, 462 (1966).Google Scholar
  4. 4.
    S. Chandrasekhar, Radiative Transfer, Oxford University Press, London (1950); V. V. Sobolev, The Transport of Ray Energy in Stellar and Planetary Atmospheres [in Russian], Gostekhizdat (1956).Google Scholar
  5. 5.
    L. M. Biberman, Zh. Éksp. Teor. Fiz.,17, 416 (1947).Google Scholar
  6. 6.
    T. Holstein, Phys. Rev.,72, 1212 (1947).Google Scholar
  7. 7.
    M. I. D'yakonov and V. I. Perel', Zh. Éksp. Teor. Fiz.,47, 1483 (1964).Google Scholar
  8. 8.
    I. Barrat, J. Phys. Rad.,20, 541, 633 (1959).Google Scholar
  9. 9.
    A. Omont, J. Phys. Rad.,26, 576 (1965).Google Scholar
  10. 10.
    D. Anderson, P. Andres, and D. Fen, Studies with Molecular Beams [Russian translation], Mir, Moscow (1969).Google Scholar
  11. 11.
    L. V. Keldysh, Zh. Éksp. Teor. Fiz.,47, 1515 (1964).Google Scholar
  12. 12.
    V. Korenman, Ann. of Phys.,39, 72 (1966).Google Scholar
  13. 13.
    B. A. Veklenko and G. B. Tkachuk, Trudy Mosk. Energ. Inst.,144, 5 (1972).Google Scholar
  14. 14.
    V. Weisskopf, Ann. Phys.,9, 23 (1931).Google Scholar
  15. 15.
    A. Z. Dolginov and G. G. Pavlov, Astron. Zh.,50, 752 (1973).Google Scholar
  16. 16.
    Yu. N. Gnedin and G. G. Pavlov, Zh. Éksp. Teor. Fiz.,65, 1806 (1973).Google Scholar
  17. 17.
    A. R. Edmonds, The Deformation of Atomic Nuclei [Russian translation], IL, Moscow (1958).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • V. P. Afanas'ev
    • 1
  • B. A. Veklenko
    • 1
  1. 1.Moscow Power Engineering InstituteUSSR

Personalised recommendations