Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Generalized WKB method in the three-dimensional case. I

  • 32 Accesses


The possibility of using the generalized WKB method for studying the steady states of a single-frequency system in three-dimensional potential fields which do not allow the variables to be separated in the Schrödinger equation is considered. Approximate wave functions are constructed; these transform into the well-known van Horn wave functions in the quasiclassical case.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    V. A. Fok, Dokl. Akad. Nauk SSSR,1, 241 (1934); Radiotekhnika i Élektronika,1, 560 (1956).

  2. 2.

    M. I. Petrashen, Dokl. Akad. Nauk SSSR,50, 1447 (1945); Uch. Zap. Leningrad. Gos. Univ., Ser. Fiz., No. 7 (1949).

  3. 3.

    M. G. Veselov, in: Questions of the Atomic Theory of Atoms [in Russian], Izd. LGU, Leningrad (1970).

  4. 4.

    S. C. Miller and R. H. Good, Phys. Rev.,91, 174 (1953).

  5. 5.

    P. Pechukas, J. Chem. Phys.,54, 3864 (1971);57, 5577 (1972).

  6. 6.

    H. Van Horn, Thesis, Cornell University, CRSR,211 (1965).

  7. 7.

    D. A. Kirzhnits and G. V. Shpatakovskaya, Preprint No. 61, P. N. Lebedev Physical Inst., Acad. Sci. USSR [in Russian], Moscow (1973).

  8. 8.

    N. I. Zhirnov, Izv. Vyssh. Ucheb. Zaved., Fiz., No. 11, 63 (1974).

  9. 9.

    A. I. Baz', Ya. B. Zel'dovich, and A. M. Perelomov, Scattering, Reactions, and Decays in Non-relativistic Quantum Mechanics [in Russian], Nauka, Moscow (1971), p. 211.

Download references

Author information

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 43–50, May, 1975.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhirnov, N.I., Nurlygayanov, F.B. Generalized WKB method in the three-dimensional case. I. Soviet Physics Journal 18, 630–635 (1975).

Download citation


  • Steady State
  • Wave Function
  • Potential Field
  • Approximate Wave
  • Approximate Wave Function