Instructional Science

, Volume 22, Issue 5, pp 363–383 | Cite as

Differential effects of instructional support on learning in simultation environments

  • Marcel V. J. Veenman
  • Jan J. Elshout


This article investigates a complex Aptitude Treatment Interaction (ATI), of intelligence and metacognitive skill as aptitudes with structuredness of learning environment as treatment. A more structured learning environment is usually regarded as beneficial to learning in low intelligence students, whereas it may not affect or may even interfere with learning in high intelligence students. The overall analyses of four studies are presented, including a total of 99 subjects. High and low intelligence novices passed through either structured or unstructured simulation environments in the domains of heat theory, electricity, or statistics. Thinking-aloud protocols were analyzed in order to assess the metacognitive skillfulness of subjects. Several learning tests were administered, assessing both declarative and procedural domain knowledge. The results show that structuredness of learning environment did not affect learning in high intelligence subjects, irrespective of their level of metacognitive skillfulness. However, the structured learning environment yielded enhanced learning performances in low intelligence subjects with a low level of metacognitive skillfulness, while it interfered with learning in low intelligence subjects with a relatively high level of metacognitive skillfulness.


Learning Environment Differential Effect Domain Knowledge Simulation Environment Treatment Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brown, A. L. (1978). Knowing when, where, and how to remember a problem of metacognition, in R. Glaser, ed.,Advances in Instructional Psychology, Vol. 1 (pp. 77–165). Hillsdale, NJ: Erlbaum.Google Scholar
  2. Bruner, J. S. (1976).The Relevance of Education. Harmondsworth: Penguin Education.Google Scholar
  3. Collins, A. & Stevens, A. L. (1983). A cognitive theory of inquiry teaching, in C. M. Reigeluth, ed.,Instructional Design Theories and Models: An Overview of Their Current Status (pp. 247–278). Hillsdale, NJ: Erlbaum.Google Scholar
  4. Cronbach, L. J. & Snow, R. E. (1977).Aptitudes and Instructional Methods: A Handbook for Research on Interactions. New York: Irvington.Google Scholar
  5. De Jong, T. (1986).Kennis en Het Oplossen van Vakinhoudelijke Problemen [Knowledge Based Problem Solving], Dissertation. Eindhoven: Technical University Eindhoven.Google Scholar
  6. De Jong, T. (1991). Learning and instruction with computer simulations.Education & Computing 6: 215–227.Google Scholar
  7. DiSessa, A. A. (1987). Artificial worlds and real experience, in R. W. Lawler & M. Yazdani, eds.,Artificial Intelligence and Education. Volume One: Learning Environments and Tutoring Systems (pp. 55–77). Norwood: Ablex Publishing Corporation.Google Scholar
  8. Elshout, J. J. (1976).Karakteristieke Moeilijkheden in Het Denken. Dissertation. Amsterdam: University of Amsterdam.Google Scholar
  9. Elshout, J. J. (1987). Problem solving and education, in E. de Coite, H. Lodewijks, R. Parmentier & P. Span, eds.,Learning and Instruction (pp. 259–273). Oxford: Pergamon Books Ltd. Leuven: University Press.Google Scholar
  10. Elshout, J. J. & Veenman, M. V. J. (1992). Relation between intellectual ability and working method as predictors of learning.Journal of Educational Research 85: 134–143.Google Scholar
  11. Elshout, J. J. & Veenman, M. V. J. & Van Hell, J. G. (1993). Using the computer as a help tool during learning by doing.Computers & Education 21: 115–122.Google Scholar
  12. Elshout-Mohr, M. (1992). Metacognitie van lerenden in onderwijsleerprocessen (Metacognition of learners in educational learning processes).Tijdschrifl voor Onderwijsresearch 17: 273–302.Google Scholar
  13. Flavell, J. H. (1979). Metacognition and cognitive monitoring.American Psychologist 34: 906–911.CrossRefGoogle Scholar
  14. Goodyear, P., Njoo, M., Hijne, H. & Van Berkum, J. J. A. (1991). Learning processes, learner attributes and simulations.Education & Computing 6: 263–304.Google Scholar
  15. Guilford, J. P. (1967).The Nature of Human Intelligence. New York: McGraw-Hill.Google Scholar
  16. Inhelder, B. & Piaget, J. (1958).The Growth of Logical Thinking. London: Routledge & Kegan Paul.Google Scholar
  17. Klahr, D. & Dunbar, K. (1988). Dual space search during scientific reasoning.Cognitive Science 12: 1–48.Google Scholar
  18. Kunz, G. C., Drewniak, U. & Schott, F. (1992). On-line and off-line assessment of self-regulation in learning from instructional text.Learning and Instruction 2: 287–301.Google Scholar
  19. Lohman, D. F. (1990). When good programs have bad effects on good students: Understanding mathemathanic effects in thinking skills programs, in M. J. Ippel & J. J. Elshout, eds.,Training van Hogere-Orde-Denkprocessen(pp. 21–30). Lisse: Swets & Zeitlinger.Google Scholar
  20. Markman, E. M. (1985). Comprehension monitoring: Development and educational issues, in S. J. Chipman, J. W. Segal & R. Glaser, eds.,Thinking and Learning Skills: Research and Open Questions, Vol. 2 (pp. 275–291). Hillsdale NJ: Erlbaum.Google Scholar
  21. Mettes, C. T. C. W. & Pilot, A. (1980).Over Het Leren Oplossen van Natuurwetenschappelijke Problemen. Dissertation. Enschede: Twente University.Google Scholar
  22. Mettes, C. T. C. W., Pilot, A. & Roossink, H. J. (1981). Linking factual and procedural knowledge in solving science problems: a case study in a thermodynamics course.Instructional Science 10: 333–361.Google Scholar
  23. Njoo, M. & De Jong, T. (1991). Learning processes of students working with a computer simulation in mechanical engineering, in M. Carretero, M. Pope, R. Simons & J. I. Pozo, eds.,Learning and Instruction: European Research in an International Context. Volume III (pp. 483–499). Oxford: Pergamon Press.Google Scholar
  24. Njoo, M. & De Jong, T. (1993). Exploratory learning with a computer simulation for control theory: Learning processes and instructional support.Journal of Research in Science Teaching.Google Scholar
  25. Reimann, P. (1989). Modeling scientific discovery learning processes with adaptive production systems, in D. J. Bierman, J. Breuker & J. Sandberg, eds.,Artificial Intelligence and Education: Synthesis and Reflection (pp. 218–227). Amsterdam: IOS.Google Scholar
  26. Resnick, L. B. & Glaser, R. (1976). Problem solving and intelligence, in L. B. Resnick, ed.,The Nature of Intelligence (pp. 205–230). Hillsdale NJ: Erlbaum.Google Scholar
  27. Shute, V. J. (1992). Aptitude-treatment interactions and cognitive skill diagnosis, in J. W. Regian & V. J. Shute, eds.,Cognitive Approaches to Automated Instruction (pp. 15–47). Hillsdale, NJ: Erlbaum.Google Scholar
  28. Shute, V. J. (1993a). A comparison of learning environments: All that glitters, in S. P. Lajoie & S. J. Deny, eds.,Computers as Cognitive Tools (pp. 47–74). Hillsdale, NJ: Erlbaum.Google Scholar
  29. Shute, V. J. (1993b). A macroadaptive approach to tutoring.Journal of Artificial Intelligence in Education 4: 61–93.Google Scholar
  30. Shute, V. J., Glaser, R. & Raghavan, K. (1989). Inference and discovery in an exploratory laboratory, in P. L. Ackerman, R. J. Sternberg & R. Glaser, eds.,Learning and Individual Differences (pp. 279–326). New York: Freeman.Google Scholar
  31. Snow, R. E. (1980). Aptitude processes, in R. E. Snow, P. Federico & W. E. Montague, eds.,Aptitude, Learning, and Instruction. Volume 1: Cognitive Process Analysis of Aptitude (pp. 27–63). Hillsdale, NJ: Erlbaum.Google Scholar
  32. Snow, R. E. (1989). Aptitude-treatment interaction as a framework for research on individual differences in learning, in P. L. Ackerman, R. J. Sternberg & R. Glaser, eds.,Learning and Individual Differences (pp. 13–59). New York: Freeman.Google Scholar
  33. Snow, R. E. & Lohman, D. F. (1984). Toward a theory of cognitive aptitude for learning from instruction.Journal of Educational Psychology 76: 347–376.Google Scholar
  34. Snow, R. E. & Yalow, E. (1982). Education and intelligence, in R. J. Sternberg, ed.,Handbook of Human Intelligence (pp. 493–585). Cambridge: Cambridge University Press.Google Scholar
  35. Sternberg, R. J. (1990).Metaphors of the Mind: Conceptions of the Nature of Intelligence. Cambridge: Cambridge University Press.Google Scholar
  36. Sweller, J. (1988). Cognitive load during problem solving: Effects on learning.Cognitive Science 12: 257–285.CrossRefGoogle Scholar
  37. Van Berkum, J. J. A. & De Jong, T. (1991). Instructional environments for simulations.Education & Computing 6: 305–358.Google Scholar
  38. Van Joolingen, W. R. (1993).Understanding and Facilitating Discovery Learning in Computer-Based Simulation Environments. Dissertation. Eindhoven: Technical University Eindhoven.Google Scholar
  39. Veenman, M. V. J. (1993).Intellectual Ability and Metacognitive Skill: Determinants of Discovery Learning in Computerized Learning Environments. Dissertation. Amsterdam: University of Amsterdam.Google Scholar
  40. Veenman, M. V. J. & Elshout, J. J. (1991). Intellectual ability and working method as predictors of novice learning.Learning and Instruction 1: 303–317.Google Scholar
  41. Veenman, M. V. J. & Elshout, J. J. (1992). Intelligence en metacognitieve vaardigheden [Intelligence and metacognitive skills].Tijdschrifi voor Onderwijsresearch 17: 290–302.Google Scholar
  42. Veenman, M. V. J., Elshout, J. J. & Bierman, D. J. (1992). Structuredness of learning environment versus individual differences as predictors of learning, in P. A. M. Kommers, D. H. Jonassen & T. Mayes, eds.,Cognitive Tools for Learning (NATO ASI Series F, Vol. 81, pp. 227–239). Heidelberg: Springer-Verlag.Google Scholar
  43. Veenman, M. V. J., Elshout, J. J. & Busato, V. V. (1994). Metacognitive mediation in learning with computer-based simulations.Computers in Human Behavior 10: 93–106.Google Scholar
  44. Veenman, M. V. J., Elshout, J. J. & Groen, M. G. M. (1993). Thinking aloud: Does it affect regulatory processes in learning.Tijdschrifi voor Onderwijsresearch 18: 322–330.Google Scholar
  45. Veenman, M. V. J., Elshout, J. J. & Hoeks, J. C. J. (1993). Determinants of learning in simulation environments across domains, in D. Towne, T. de Jong & H. Spada, eds.,Simulation-based Experiential Learning (pp. 235–249). Berlin: Springer-Verlag.Google Scholar
  46. White, B. Y. & Frederiksen, J. R. (1987). Qualitative models and intelligent learning environments, in R. W. Lawler & M. Yazdani, eds.,Artificial Intelligence and Education. Volume One: Learning Environments and Tutoring Systems (pp. 281–305). Norwood: Ablex Publishing Corporation.Google Scholar
  47. White, B. Y. & Frederiksen, J. R. (1990). Causal model progressions as a foundation for intelligent learning environments.Artificial Intelligence 42: 99–157.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Marcel V. J. Veenman
    • 1
  • Jan J. Elshout
    • 2
  1. 1.Dept. of Educational PsychologyLeiden UniversityAK LeidenThe Netherlands
  2. 2.Dept. of PsychonomyUniversity of AmsterdamThe Netherlands

Personalised recommendations