Advertisement

Mathematical Geology

, Volume 20, Issue 6, pp 631–654 | Cite as

Fractal and geostatistical methods for modeling of a fracture network

  • J. P. Chilès
Articles

Abstract

The modeling of fracture networks is useful for fluid flow and rock mechanics studies. About 6600 fracture traces were recorded on drifts of a uranium mine in a granite massif. The traces have an extension of 0.20–20 m. The network was studied by fractal and by geostatistical methods but can be considered neither as a fractal with a constant dimension nor a set of purely randomly located fractures. Two kinds of generalization of conventional models can still provide more flexibility for the characterization of the network: (a) a nonscaling fractal model with variable similarity dimension (for a 2-D network of traces, the dimension varying from 2 for the 10-m scale to 1 for the centimeter scale, (b) a parent-daughter model with a regionalized density; the geostatistical study allows a 3-D model to be established where: fractures are assumed to be discs; fractures are grouped in clusters or swarms; and fracturation density is regionalized (with two ranges at about 30 and 300 m). The fractal model is easy to fit and to simulate along a line, but 2-D and 3-D simulations are more difficult. The geostatistical model is more complex, but easy to simulate, even in 3-D.

Key words

Fractals geostatistics fracture network granite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, J., Shapiro, A. M., and Bear, J., 1984, A Stochastic Model of a Fractured Rock Conditioned by Measured Information: Water Resour. Res., v. 20, no. 1, p. 79–88.Google Scholar
  2. Baecher, G. B. and Lanney, N. A., 1978, Trace Length Biases in Joint Surveys,in Proceedings of the 19th U.S. Symposium on Rock Mechanics: A.I.M.E., p. 56–65.Google Scholar
  3. Baecher, G. B., Lanney, N. A., and Einstein, H. H., 1977, Statistical Description of Rock Properties and Sampling,in Proceedings of the 18th U.S. Symposium on Rock Mechanics: A.I.M.E., p. 5C1-1–5C1-8.Google Scholar
  4. Barton, C. C. and Larsen, E., 1985, Fractal Geometry of Two-Dimensional Fracture Networks at Yucca Mountain, Southwestern Nevada,in Proceedings of the International Symposium on Fundamentals of Rock Joints, Bjorkliden, p. 77–84.Google Scholar
  5. Bertrand, L.; Beucher, H.; Creutin, D.; Feuga, B.; Landry, J.; and Thiéry, D. 1982, Essai de Détermination de la Distribution Régionale du Tenseur de Perméabilité du “Milieu Poreux Équivalent,”in Les Milieux Discontinus en Hydrogéologie, Documents du BRGM, No. 45: Bureau de Recherches Géologiques et Minières, Orléans, p. 97–120.Google Scholar
  6. Blanchin, R., 1984, Etude Statistique et Géostatistique de la Fracturation de la Mine de Fanay-Augères, Report CCE/CEA/BRGM, no. 84, RDM 074 IM.Google Scholar
  7. Blès, J. L.; Dutartre, P.; Feybesse, J. L.; Gros, Y.; and Martin, P. 1983, Etude Structurale de la Fracturation du Granite de Saint-Sylvestre, Report CCE/CEA/BRGM, no. 83 SGN 426 GEO.Google Scholar
  8. Chilès, J. P., 1988, Three-Dimensional Geometric Modelling of a Fracture Network,in Proceedings of DOE/AECL'87 Conference, San Francisco, California.Google Scholar
  9. Conrad, F. and Jacquin, C., 1973, Représentation d'un Réseau Bidimensionnel de Fractures par un Modèle Probabiliste. Application au Calcul des Grandeurs Géométriques des Blocs Matriciels: Revue de l'I.F.P., v. XXVIII, no. 6, Nov.−Dec., p. 843–890.Google Scholar
  10. Coster, M. and Chermant, J. L., 1983, Recent Developments in Quantitative Fractography: Int. Met. Rev., v. 28, 46 p.Google Scholar
  11. Cruden, D. M., 1977, Describing the Size of Discontinuities: Int. J. Rock Mech. Min. Sci. Geomech. Abstr., v. 14, p. 133–137.Google Scholar
  12. Curl, R. L., 1986, Fractal Dimensions and the Geometries of Caves: Math. Geol., v. 18, no. 8, p. 765–783.Google Scholar
  13. Delaney, P. T.; Pollard, D. D.; Ziony, J. I.; and McKee, E. H., 1986, Field Relations Between Dykes and Joints: Emplacement Processes and Paleostress Analysis: J. Geophys. Res., v. 91, no. B5, p. 4920–4938.Google Scholar
  14. Deverly, F., 1984, Echantillonnage et Géostatistique, Thesis: E.N.S. des Mines de Paris, 152 p.Google Scholar
  15. Feuga, B., 1983, Caractérisation du Milieu Poreux Équivalent à un Milieu Fracturé par Essais à l'Eau in Situ,in Proceedings of the International Symposium Reconnaissance des Sols et des Roches par Essais en Place, Paris.Google Scholar
  16. Feuga, B., 1986, Hydrogeologic Modeling of Fractured Rock: Jornadas Sobre Modelos Matematicos Aplicables al Almacenamiento de Residuos Radioactivos, Madrid, Escuela Superior de Engenieros de Minas de Madrid.Google Scholar
  17. Gentier, S., 1986, Morphologie et Comportement Hydromécanique d'une Fracture Naturelle dans un Granite sous Contrainte Normale, Thesis: Université d'Orléans, 2 vol., 637 p.Google Scholar
  18. Hestir, K.; Chilès, J. P.; Long, J.; and Billaux, D., 1986, Three Dimensional Modeling of Fractures in Rocks; from Data to a Regionalized Parent-Daughter Model. American Geophysical Union Meeting. San Francisco, California. (To appear in AGU Geophysical Monography volume on unsaturated fractured rock, 1987.)Google Scholar
  19. Hudson, J. and Priest, S. D., 1979, Discontinuities and Rock Mass Geometry: Mt. J. Rock Mech. Min. Sci. Geomech. Abstr., v. 16, p. 339–362.Google Scholar
  20. La Pointe, P. R., 1980, Analysis of the Spatial Variation in Rock Mass Properties Through Geostatistics,in Proceedings of the 21th U.S. Symposium on Rock Mechanics, Rolla, p. 570–580.Google Scholar
  21. Laslett, G. M., 1982, Censoring and Edge Effect in Areal and Line Transect Sampling of Rock Joint Traces: Math. Geol., v. 14, no. 2, p. 125–140.Google Scholar
  22. Loiseau, P., 1987, Etude Structurale et Géostatistique des gneiss de la Région du Cézallier: Modélisation Tridimensionnelle de Réseaux de Fractures; Application à l'Écoulement des Fluides, Thesis, Université d'Orléans, 200 p.Google Scholar
  23. Long, J. C. S., 1986, Modeling of Fluid Flow and Transport in Fracture Networks, Jornadas Sobre Modelos Matematicos Aplicables al Almacenamiento de Residuos Radioactivos, Madrid, Escuela Superior de Engenieros de Minas de Madrid.Google Scholar
  24. Mandelbrot, B. B., 1983, The Fractal Geometry of Nature, 2nd ed.: Freeman, New York, 468 p.Google Scholar
  25. Mandelbrot, B. B., Passoja, D., and Paullay, A., 1984, Fractal Character of Fracture Surfaces of Metals: Nature, v. 308, p. 721–722.Google Scholar
  26. Mantoglou, A., 1987, Digital Simulation of Multivariate Two- and Three-Dimensional Stochastic Processes with a Spectral Turning Bands Method: Math. Geol., v. 19, no. 2, p. 129–149.Google Scholar
  27. Massoud, H., 1987, Modélisation de la Petite Fracturation par les Techniques de la Géostatistique, Thesis, E.N.S. des Mines de Paris, 173 p.Google Scholar
  28. Matheron, G., 1973, The Intrinsic Random Functions and Their Applications, Adv. Appl. Prob., No. 5, p. 439–468.Google Scholar
  29. Miller, S. M., 1979, Geostatistical Analysis for Evaluating Spatial Dependence of Fracture Set Characteristics,in Proceedings of 16th APCOM Symposium: SME-AIME, New York, p. 537–545.Google Scholar
  30. Pahl, P. J., 1981, Estimating the Mean Length of Discontinuity Traces: Int. J. Rock Mech. Min. Sci. Geomech. Abstr., v. 18, p. 221–228.Google Scholar
  31. Shaw, H. R. and Gartner, A. E., 1986, On the Graphical Interpretation of Paleoseismic Data: U.S. Geological Survey Open-file Report 86–394, 92 p.Google Scholar
  32. Snow, D. T., 1970, The Frequency and Apertures of Fractures in Rock: Int. J. Rock Mech. Min. Sci., v. 7, p. 23–40.Google Scholar
  33. Thomas, A., 1987, Structure Fractale de l'Architecture de Champs de Fractures en Milieu Rocheux: Compt. Rend. Acad. Sci. Paris, v. 304, Sér. II, no. 4, p. 181–186.Google Scholar
  34. Turcotte, D. L., 1986, A Fractal Model for Crustal Deformation: Tectonophysics, v. 132, p. 261–269.Google Scholar
  35. Warburton, P. M., 1980, A Stereological Interpretation of Joint Trace Data: Int. J. Rock Mech. Min. Sci. Geomech. Abstr., v. 17, p. 181–190.Google Scholar

Copyright information

© International Association for Mathematical Geology 1988

Authors and Affiliations

  • J. P. Chilès
    • 1
  1. 1.Bureau de Recherches Géologiques et MinièresOrléans Cedex 2France

Personalised recommendations