Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Regionalization in geology by multivariate classification


The concept of multivariate classification of “geological objects” can be combined with the concept of regionalized variables to yield a procedure for typification of geological objects, such as rock units, well records, or samples. Numerical classification is followed by subdivision of the area of investigation, and culminates in a regionalization or mapping of the classification onto the plane. Regions are subdivisions of the map area which are spatially contiguous and relatively homogeneous in their geological properties. The probability of correct classification of each point within a region as being part of that region can be assessed in terms of Bayesian probability as a space-dependent function. The procedure is applied to subsurface data from western Kansas. The geologic properties used are quantitative variables, and relationships are expressed by Mahalanobis' distances. These functions could be replaced by other metrics if qualitative or binary data derived from geological descriptions or appraisals were included in the analysis.

This is a preview of subscription content, log in to check access.


  1. Anderberg, M. R., 1973,Cluster Analysis for Applications: Academic Press, New York, 359 p.

  2. Bagirov, B. A., Djafarov, I. S., and Djafarova, N. M., 1987, Application of Fuzzy Sets Theory to the Solution of Pattern Recognition Problems in Oil and Gas Geology,in Prochorov, Ju. A., and Sazonov, V. V. (Eds.),Proc. 1st World Congress Bernoulli Soc., Tashkent, USSR, 8–14 Sept. 1986: VNU Sci. Press, Utrecht, p. 579–582.

  3. Harff, J., Davis, J. C., Watney, L., Bohling, J., and Wong, J. C., 1989, Regionalization of Western Kansas Based on Multivariate Classification of Stratigraphic Data from Oil Wells: Open-File Rept. 89-21, Kansas Geol. Survey, Univ. Kansas, Lawrence, Kansas, 26 p.

  4. Harff, J., and Schwab, G., 1987, The Application of Multidimensional Random Functions for Structural Modeling of the Platform Cover,in Prochorov, Ju. A., and Sazonov, V. V. (Eds.),Proc. 1st World Congress Bernoulli Soc., Tashkent, USSR, 8–14 Sept. 1986: VNU Sci. Press, Utrecht, p. 583–588.

  5. Haslett, J., 1989, Geostatistical Neighborhoods and Subset Selection,in Armstrong, M. (Ed.),Geostatistics, Proc. 3rd Geostat. Congress, 5–9 Sept. 1988, Avignon, France: Kluwer Acad. Publ., Dordrecht, p. 569–578.

  6. Journel, A. G., and Huijbregts, C. J., 1978,Mining Geostatistics: Academic Press, London, 600 p.

  7. Kogan, R. I., 1986, Interval'nye ocenki v geologičeskich issledovanijach.—Izd.„Nedra“: Moskva, 335 p.

  8. Lance, G. N., and Williams, W. T., 1967, A General Theory of Classificatory Sorting Strategies: 1. Hierarchical Systems: Comp. Journ., London, v. 9, p. 373–380.

  9. Myers, D. E., 1982, Matrix Formulation of Co-Kriging: Math. Geol., v. 14, p. 249–257.

  10. Rodionov, D. A., 1981, Statističeskie rešenija v geologii.—Izd.„Nedra“: Moskva, 231 p.

  11. Rodionov, D. A., et al., 1987, Spravočnik po matematičeskim metodam v geologii.—Izd.„Nedra“: Moskva, 335 p.

  12. Sampson, R. J., 1988, SURFACE III User's Manual: Kansas Geol. Survey, Univ. Kansas, Lawrence, Kansas, 277 p.

  13. Sirotinskaya, S. V., 1981, Logičeskij analiz pri izučenii metallogeničeskoj specializacii regional'nych rydokontrollirujuščich struktur.—Sov. Geol., Moskva (1981) 6, p. 60–66.

  14. Tatsuoka, M. M., 1971,Multivariate Analysis: Techniques for Educational and Psychological Research: John Wiley & Sons, Inc., New York, 310 p.

  15. Voronin, Ju. A., 1967, Geologija i matematika.—Izd. „Nauka“: Novosibirsk, 253 p.

  16. Watney, L., 1985, Resolving Controls on Epeiric Sedimentation Using Trend Surface Analysis: Math. Geol., v. 17, p. 427–454.

  17. Watney, L., 1986, Petroleum Reservoir Characterization of Upper Pennsylvanian Cyclic Carbonates in the Hugoton Embayment: Proceedings of Short Course sponsored by Panhandle Geological Society, May 19, Amarillo, Texas, 67 p.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harff, J., Davis, J.C. Regionalization in geology by multivariate classification. Math Geol 22, 573–588 (1990).

Download citation

Key words

  • classification
  • regionalization
  • Bayes' theorem
  • geostatistics