Mathematical Geology

, Volume 25, Issue 5, pp 525–540 | Cite as

Generalized covariance functions in estimation

  • Peter K. Kitanidis


I discuss the role of generalized covariance functions in best linear unbiased estimation and methods for their selection. It is shown that the experimental variogram (or covariance function) of the detrended data can be used to obtain a preliminary estimate of the generalized covariance function without iterations and I discuss the advantages of other parameter estimation methods.

Key words

geostatistics linear model best linear unbiased estimation experimental variogram restricted maximum likelihood 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, M., 1984, Problems with Universal Kriging: Math Geo., v. 16, p. 101–108.Google Scholar
  2. Christensen, R., 1990, The Equivalence of Predictions from Universal Kriging and Intrinsic Random Function Kriging: Math. Geo., v. 22, p. 655–664.Google Scholar
  3. Delfiner, P., 1976, Linear Estimation of Nonstationary Spatial Phenomena,in M. Guarascio, M. David, and C. Huijbregts, Eds.,Advanced Geostatistics in the Mining Industry: Reidel, Dordrecht.Google Scholar
  4. Hoeksema, R. J., and Kitanidis P. K., 1984, An Application of the Geostatistical Approach to the Inverse Problem in Two-Dimensional Groundwater Modeling: Water Res. Res., v. 20, p. 1003–1020.Google Scholar
  5. Journel, A., 1986, Geostatistics: Models and Tools for the Earth Sciences: Math. Geo., v. 18, p. 119–140.Google Scholar
  6. Kitanidis, P. K., 1983, Statistical Estimation of Polynomial Generalized Covariance Functions and Hydrologic Applications: Water Res. Res., v. 19, p. 909–921.Google Scholar
  7. Kitanidis, P. K., 1987, Parametric Estimation of Covariances of Regionalized Variables: Wat. Res. Bull., v. 23, p. 557–567.Google Scholar
  8. Kitanidis, P. K., 1991, Orthonormal Residuals in Geostatistics; Model Criticism and Parameter Estimation: Math. Geo., v. 23, p. 741–758.Google Scholar
  9. Matheron, G., 1971, The Theory of Regionalized Variables and Its Applications: Ecole des Mines, Fountainbleau, France.Google Scholar
  10. Matheron, G., 1973, The Intrinsic Random Function: Adv. Appl. Prob., v. 5, p. 438–468.Google Scholar
  11. Starks, T. H., and Fang, J. H., 1982, The Effect of Drift on the Experimental Semivariogram: Math. Geo., v. 14, p. 309–319.Google Scholar

Copyright information

© International Association for Mathematical Geology 1993

Authors and Affiliations

  • Peter K. Kitanidis
    • 1
  1. 1.Civil EngineeringStanford UniversityStanford

Personalised recommendations