Applied physics

, Volume 1, Issue 5, pp 241–256

Dielectric parameterization of raman lineshapes for GaP with a plasma of charge carriers

  • D. T. Hon
  • W. L. Faust
Invited Paper

Abstract

We have studied the Raman lineshapes of several samples of GaP with appreciable carrier concentrations. There is no feature identifiable as a plasma resonance, but there are pronounced effects of interaction with the LO phonon resonance. For analysis we have developed a model along lines laid down by Barker and Loudon, employing Nyquist relations to calculate infrared fluctuations which scatter light. We introduce a response matrix α(ω) withseveral resonances; and we uncover some points which seem to be new, for coupled-mode scattering systems in general. In the GaP-plasma problem the data do not necessitate inclusion of the scattering amplitude from the plasma; we ascribe this to large plasma damping rates (ωτ≲1). This provides an account for the lack of any apparent plasma resonance in the scattering and for the modified appearance of the LO phonon, relative to the pure crystal. We emphasize that the following parameters suffice: Lorentz parameters measured in linear infrared experiments, the nonlinear parameterC from a visible-infrared mixing experiment, and the plasma frequency and damping fit to each sample.

Beyond treatment of the plasma problem, the theory bears more generally on the conditions under which an LO Raman lineshape measures locally the shape of 〈E2ω. Also it bears upon the analysis of polariton linewidths to infer the variation of the phonon damping Γ(ω).

Index Headings

Raman lineshapes Plasma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. B. Varga: Phys. Rev.137, A 1896 (1965)CrossRefADSGoogle Scholar
  2. 2.
    A. Mooradian, G. B. Wright: Phys. Rev. Letters16, 999 (1966)CrossRefADSGoogle Scholar
  3. 3.
    J. F. Scott, T. C. Damen, J. Ruvalds, A. Zawadowski: Phys. Rev. B3, 1295 (1971)CrossRefADSGoogle Scholar
  4. 4.
    F. A. Blum, A. Mooradian: Light scattering from plasmons in InSb,Proc. 10th International Conference on Physics of Semi-Conductors, F. P. Keller,ed., published by U.S. Atomic Energy Commission, Division of Technical Information, p. 755Google Scholar
  5. 5.
    D. T. Hon, S. P. S. Porto, W. G. Spitzer, W. L. Faust: J. Opt. Soc. Am.61, 679A (1971); D. T. Hon, W. L. Faust, S. P. S. Porto: Bull. Am. Phys. Soc. II17, 125 (1972)Google Scholar
  6. 6.
    M. V. Klein, B. N. Ganguly, P. J. Colwell: Phys. Rev. B6, 2380 (1972)CrossRefADSGoogle Scholar
  7. 7.
    A. Moordian, A. L. McWhorter: Phys. Rev. Letters19, 849 (1967)CrossRefADSGoogle Scholar
  8. 8.
    The physical model and the mathematical analysis are similar to those described by A. S. Barker, Jr., R. Loudon: Rev. Mod. Phys.44, 18 (1972)CrossRefADSGoogle Scholar
  9. 9.
    This is discussed in Ref. [8], Section 2 EGoogle Scholar
  10. 10.
    L. D. Landau, E. M. Lifshitz:Statistical Physics (Pergamon Press, London, 1969), 2nd ed., Chap. XII, Sects. 123, 124Google Scholar
  11. 11.
    M. Born, K. Huang:Dynamical Theory of Crystal Lattices (Oxford, London 1954), 1st ed.Google Scholar
  12. 12.
    W. L. Faust, C. H. Henry: Phys. Rev. Letters17, 1265 (1966); W. L. Faust, C. H. Henry, R. H. Eick: Phys. Rev.173, 781 (1968)CrossRefADSGoogle Scholar
  13. 13.
    C. H. Henry, J. J. Hopfield: Phys. Rev. Letters15, 964 (1965)CrossRefADSGoogle Scholar
  14. 14.
    S. P. S. Porto, B. Tell, T. C. Damen: Phys. Rev. Letters16, 450 (1966)CrossRefADSGoogle Scholar
  15. 15.
    A. S. Barker, Jr.: Phys. Rev.165, 917 (1968)CrossRefADSGoogle Scholar
  16. 16.
    H. J. Benson, D. L. Mills: Phys. Rev. B1, 4835 (1970)CrossRefADSGoogle Scholar
  17. 17.
    S. Ushioda, J. D. McMullen: Solid State Comm.11, 299 (1972)CrossRefGoogle Scholar
  18. 18.
    D. F. Nelson, E. H. Turner: Appl. Phys.39, 3337 (1968)CrossRefGoogle Scholar
  19. 19.
    W. L. Bond: J. Appl. Phys.36, 1674 (1965)CrossRefGoogle Scholar
  20. 20.
    The ratio of the area under Im {LO} to that under Im {TO} is 0.1925. In the approximation\(\Gamma<< \Omega \sim \omega _T\), it may be shown analytically that for equal displacements from the respective resonant frequenciesω L andω T we have the ratio Im {LO}=(Ω 2/ω T2) Im {TO}=0.2118 Im {TO}; so the integrals are in this ratio, and the linewidths are equalGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • D. T. Hon
    • 1
  • W. L. Faust
    • 1
  1. 1.Departments of Physics and of Electrical EngineeringThe University of Southern CaliforniaLos AngelesUSA
  2. 2.Hughes Aircraft Co.Culver City
  3. 3.Naval Research LaboratoryWashington, D.C.

Personalised recommendations