Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Numerical solution of nonlinear two-dimensional problems on the nonaxisymmetric deformation of layered shells of revolution of variable stiffness

  • 16 Accesses

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    S. A. Ambartsumyan, Theory of Anisotropic Shells [in Russian], Nauka, Moscow (1961).

  2. 2.

    L. V. Andreev, N. I. Obodan, and A. G. Lebedev, “Analysis of the behavior of geometrically nonlinear cylindrical shells,” Izv. Vyssh. Uchebn. Zaved., Mashinostr. No. 5, 5–9 (1976).

  3. 3.

    R. E. Bellman and R. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems [Russian translation], Mir, Moscow (1968).

  4. 4.

    N. V. Valishvili, Methods of Computer Design of Shells of Revolution [in Russian], Mashinostroenie, Moscow (1976).

  5. 5.

    S. K. Godunov, “Numerical solution of boundary-value problems for systems of linear ordinary differential equations,” Usp. Mat. Nauk,16, No. 3, 171–174 (1961).

  6. 6.

    Ya. M. Grigorenko, Isotropic and Anisotropic Shells of Revolution of Variable Stiffness [in Russian], Naukova Dumka, Kiev (1973).

  7. 7.

    Ya. M. Girgorenko and N. N. Kryukov, “Nonsymmetrical deformation of flexible circular layered orthotropic plates with variable stiffness parameters,” Prikl. Mekh.,18, No. 3, 49–54 (1982).

  8. 8.

    Ya. M. Grigorenko, N. N. Kryukov, and T. G. Akhalaya, “Nonaxisymmetric deformation of flexible circular plates of variable stiffness,” Prikl. Mekh.,15, No. 10, 75–80 (1979).

  9. 9.

    Ya. M. Grigorenko, N. N. Kryukov, and V. S. Demyanchuk, “Deformation of flexible shells of revolution of variable stiffness,” Dopov. Akad. Navuk UkrRSR, Ser. A, No. 4, 42–46 (1983).

  10. 10.

    V. V. Kabanov and V. D. Mikhailov, “Stability of a cylindrical shell under nonaxisymmetric loading,” in: Transactions of the Twelfth All-Union Conference on the Theory of Plates and Shells, Vol. 2, Izd. Erevan. Un-ta, Erevan (1980), pp. 184–190.

  11. 11.

    B. Ya. Kantor, Nonlinear Problems of the Theory of Nonuniform Shallow Shells, Naukova Dumka, Kiev (1971).

  12. 12.

    V. V. Novozhilov, Principles of the Nonlinear Theory of Elasticity [in Russian], Gostekhizdat, Moscow (1948).

  13. 13.

    A. V. Karmishin, V. I. Myachenkov, V. A. Lyaskovets, and A. I. Frolov, Statics and Dynamics of Thin-Walled Shell Structures [in Russian], Mashinostroenie, Moscow (1975).

  14. 14.

    V. I. Feodos'ev, “Axisymmetric elastomer of a spherical shell,” Prikl. Mat. Mekh.,33, No. 2, 280–286 (1969).

  15. 15.

    L. A. Shapovalov, “Simple variant of equations of the geometrically nonlinear theory of thin shells,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 1, 56–62 (1968).

Download references

Additional information

Institute of Mechanics, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Prikladnaya Mekhanika, Vol. 20, No. 8, pp. 37–45, August, 1984.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grigorenko, Y.M., Kryukov, N.N., Golub, G.P. et al. Numerical solution of nonlinear two-dimensional problems on the nonaxisymmetric deformation of layered shells of revolution of variable stiffness. Soviet Applied Mechanics 20, 710–717 (1984). https://doi.org/10.1007/BF00889450

Download citation

Keywords

  • Layered Shell
  • Variable Stiffness
  • Nonaxisymmetric Deformation