Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The equations of dynamics (review)

  • 35 Accesses

  • 1 Citations

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    A. Dzhondzhorov, “Generalized formulas for derivatives of complex functions and some applications in mechanics” [in Bulgarian], Godishnik na Vischite Tekhnicheski Uchebni Zavedeniya, Matematika,2 (1967).

  2. 2.

    V. V. Dobronravov, Fundamentals of the Mechanics of Nonholonomic Systems [in Russian], Vysshaya Shkola (1970).

  3. 3.

    Bl. Dolapchiev, “The Nielsen-Tsenov equations and their application to nonholonomic systems with nonlinear constraints,” Dokl. Akad. Nauk SSSR,171, No. 4 (1966).

  4. 4.

    Bl. Dolapchiev, “Jourdain principle and the Nielsen equations” [in Bulgarian], Godishnik na Sofiiskiya Universitet, FMF,59, (1966).

  5. 5.

    Bl. Dolapchiev, “The Appell-Tsenov forms of the equations of motion for holonomic and nonholonomic mechanical systems, method of generalization, and criteria for application” [in Bulgarian], Godishnik na Sofiiskiya Universitet, FMF,60 (1967).

  6. 6.

    Bl. Dolapchiev, “Some notes on the paper ‘Equations of motion of holonomic and nonholonomic material systems’ by I. Tsenov” [in Bulgarian], Godishnik na Sofiiskiya Universitet, FMF,62 (1969).

  7. 7.

    Bl. Dolapchiev, “Generalization of Nielsen-Tsenov equations” [in Bulgarian], Izvestiya na Matematicheskiya Institut Bulg. Akad. Nauk,10 (1969).

  8. 8.

    Bl. Dolapchiev, “Examples of application of reduced equations of Nielsen to nonholonomic mechanical systems” [in Bulgarian], Godishnik na Soffiskiya Universitet, FMF,62 (1969).

  9. 9.

    Bl. Dolapchiev, “Reduction of Nielsen equations for nonholonomic mechanical systems to the Chaplygin equations,” Prikl. Matem. Mekhan.,33, No. 5 (1969).

  10. 10.

    Bl. Dolapchiev, “Derivation of Keldish equation for ‘noise’ in airplane and automobile bodies through reduction of the Nielsen form for nonholonomic systems” [in Bulgarian], Godishnik na Soffiskiya Universitet, FMF,63 (1970).

  11. 11.

    Bl. Dolapchiev, “Application of the reduced equations of Nielsen for nonholonomic systems to the A. Yu. Ishlinski problem” [in Bulgarian], Izvestniya na Matematicheskiya Institut Bulg. Akad. Nauk,12 (1970).

  12. 12.

    Ya. S. Zil'berman, “Investigation of mechanisms by the method of reduced accelerations,” Tr. Rostovskovo-na-Donu Inst. Inzh. Zhel.-Dor. Transporta,29 (1961).

  13. 13.

    V. I. Kirgetov, “The equations of motion for controlled mechanical systems,” Prikl. Matem. Mekhan.,28, No. 2 (1964).

  14. 14.

    V. I. Kirgetov, “Motions of controlled mechanical systems with conditional constraints (servoconstraints),” Prikl. Matem. Mekhan.,31, No. 3 (1967).

  15. 15.

    O. I. Kukhtenko, “A type of dynamical system with nonholonomic constraints” [in Ukrainian], Dokl. Akad. Nauk Ukrainian RSR, No. 2 (1954).

  16. 16.

    O. I. Kukhtenko, “Equations of motion for automatically controlled continuous-feed cutter” [in Ukrainian], Dokl. Akad. Nauk Ukrainian RSR, No. 3 (1954).

  17. 17.

    O. I. Kukhtenko, “Stability of motion in automatically controlled continuous-feed cutting machine” [in Ukrainian], Dokl. Akad. Nauk Ukrainian RSR, No. 4 (1954).

  18. 18.

    A. I. Kukhtenko, “Analysis of the dynamics of nonholonomic control systems illustrated by a system for automatic control of cutting machines and combines,” Proceedings II All-Union Conference on the Theory of Automatic Control [in Russian], Vol. 2, Inst. Avtomatiki i Telemekhaniki, Akad. Nauk SSSR, Moscow-Leningrad (1955).

  19. 19.

    A. I. Kukhtenko, “On a class of nonholonomic mechanisms,” Proceedings of Seminar on the Theory of Machines and Mechanisms [in Russian], No. 59 (1955).

  20. 20.

    D. I. Mangeron, “Generalization of the Somov formula for accelerations of various orders,” Dokl. Akad. Nauk SSSR,102, No. 4 (1955).

  21. 21.

    D. I. Mangeron, “Graphoanalytic methods for the kinematics of material systems,” Dokl. Akad. Nauk SSSR,102, No. 5 (1955).

  22. 22.

    D. I. Mangeron, “Reduced accelerations of arbitrary order and some of their extremal properties,” Dokl. Akad. Nauk SSSR,112, No. 1 (1957).

  23. 23.

    D. I. Mangeron, “Generalized forms of the equations of analytic dynamics,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk,2 (1962).

  24. 24.

    D. I. Mangeron and K. Dregan, “Investigation of mechanisms by the method of reduced accelerations,” Proceedings of II All-Union Conference on Fundamental Problems in the Theory of Machines and Mechanisms [in Russian], Analiz i Sintez Mekhanizmov, Moscow (1960).

  25. 25.

    D. I. Mangeron and M. Ogitstoreli, “New equations of analytic mechanics and differential operators of higher orders,” Coll. translations, Mekhanika, No. 6 (1969).

  26. 26.

    D. I. Mangeron and A. I. Yasyulenis, “Some extremal properties of spatial reduced accelerations of arbitrary order used in the theory of machines and mechanisms,” Bull. Inst. Polit din Jasi,5(9, No. 1-2 (1959).

  27. 27.

    Yu. N. Maslov, “Nonholonomic systems with nonlinear constraints,” Nauchnye Trudy Tashkentsk. Gos. Un.,242 (1964).

  28. 28.

    D. S. Tavkhelidze and D. I. Mangeron, “New class of spatial reduced accelerations of arbitrary order used in the theory of machines and mechanisms,” Bull. Inst. Polit. din Jasi,5 (1959).

  29. 29.

    I. Tsenov, “New forms of generalized equations of motion in material systems” [in Bulgarian], Godishnik na Sofiiskiya Universitet, FMF (1949).

  30. 30.

    I. Tsenov, “A new form of the equations of analytic dynamics,” Dokl. Akad. Nauk SSSR,89, No. 1 (1953).

  31. 31.

    I. Tsenov, “Some transformations of the equations of motion and geodesic trajectories in mechanical systems,” Dokl. Akad. Nauk SSSR,89, No. 2 (1953).

  32. 32.

    I. Tsenov, “On the Gauss principle of least constraint,” Dokl. Akad. Nauk SSSR,89, No. 3 (1953).

  33. 33.

    I. Tsenov, “Integral variational principles of analytic dynamics,” Dokl. Akad. Nauk SSSR,89, No. 4 (1953).

  34. 34.

    I. Tsenov, “A new form of the equations of analytic dynamics and some applications of those equations” [in Bulgarian], Izvesiya na Matematicheskiya Institut Bulg. Akad. Nauk,1, Vol. 2 (1954).

  35. 35.

    I. Tsenov, “Equations of analytic dynamics” [in Bulgarian], Godishnik na Sofiiskiya Universitet, FMF, Vol. 1, Pt. 2 (1956).

  36. 36.

    I. Tsenov, “New equations of analytic dynamics,” Bull. Inst. Polit. din Jasi,5(9, No. 1-2 (1959).

  37. 37.

    I. Tsenov, “Application of new equations of analytic dynamics to relative motion of a solid” [in Bulgarian], Izvestniya na Matem. Inst. Bulg. Akad. Nauk,4, Vol. 2 (1960).

  38. 38.

    I. Tsenov, “Integral variational principles of analytic dynamics” [in Bulgarian], Godishnik na Sofiiskiya Universitet, FMF,57 (1964).

  39. 39.

    I. Tsenov, “General equations of analytic dynamics which are functions of velocity-dependent forces” [in Bulgarian], Godishnik na Sofiiskiya Universitet, FMF,59 (1966).

  40. 40.

    I. Tsenov, “application of the d'Alembert-Lagrange principle to holonomic and nonholonomic material systems in order to arrive at the equations of motion for such systems” [in Bulgarian], Izvestniya na Matematicheskiya Institut Bulg. Akad. Nauk9 (1966).

  41. 41.

    I. Tsenov, “Equations of motion in material systems with linear and nonlinear nonholonomic constrainst with respect to generalized velocities and accelerations” [in Bulgarian], Godishnik na Sofiiskiya Universitet, FMF,59 (1966).

  42. 42.

    I. Tsenov, “Equations of motion in holonomic and nonholonomic material systems” [in Bulgarian], Godishnik na Sofiiskiya Universitet, FMF,60 (1967).

  43. 43.

    I. Tsenov, “Derivation of equations of motion of a material system without using the d'Alembert-Lagrange or Holder principles” [in Bulgarian], Izvestniya na Matematicheskiya Institut Bulg. Akad. Nauk,12 (1970).

  44. 44.

    M. F. Shul'gin, “New form of Lagrangian equations of motion for holonomic systems,” Byull. Sredne-Asiatskovo Gos. Un.,23 (1945).

  45. 45.

    M. F. Shul'gin, “The method of ignorable coordinates in analytic mechanics,” Nauchnye Trudy Tashkentsk. Gos. Un.,30 (1949).

  46. 46.

    M. F. Shul'gin, “Lagrangian equations in ignorable coordinates,” Trudy Tashkentsk. Gos. Un., No. 320 (1968).

  47. 47.

    I. M. Shul'gina, “A new form of the equations of analytic dynamics,” Trudy Tashkentsk. Gos. Un., No. 189 (1961).

  48. 48.

    I. M. Shul'gina, “Generalization of certain dynamical equations of Tsenov,” Dokl. Akad. Nauk Uzbek SSR, No. 5 (1962).

  49. 49.

    I. M. Shul'gina, “Some forms of the equations of motion for a system of points with variable masses,” Trudy Tashkentsk. Gos. Un., No. 222 (1963).

  50. 50.

    I. M. Shul'gina and M. F. Shul'gin, “Generalization of the form of the Lagrangian equations for nonlinear nonholonomic systems of variable mass,” Trudy Tashkentsk. Gos. Un., No. 397 (1971).

  51. 51.

    Bl. Dolapchiev (Dolaptchiev), “Critères pour l'application des équations généralisées de Lagrange aux systèmes mécaniques non holonomes,” Compt. Rend. Acad. Sci. Paris,263, No. 9 (1966).

  52. 52.

    Bl. Dolapchiev (Dolaptchiev), “Sur les systèmes mécaniques non holonomes asujettis à des liaisons arbitraires,” Compt. Rend. Acad. Sci. Paris,262, No. 11 (1966).

  53. 53.

    Bl. Dolapchiev (Dolaptchiew), “Über die Nielsensche Form der Gleichungen von Lagrange und deren Zusammenhang mit dem Prinzip von Jourdain und mit den nichtholonomen mechanishen Systemen,” ZAMM,46, No. 6 (1966).

  54. 54.

    Bl. Dolapchiev (Dolaptschiew), “Über die verallgemeinerte Form der Lagrangeschen Gleichungern, welche auch die Behandlung von nichtholonomen mechanischen Systemen gestattet,” ZAMP,17, No. 3

  55. 55.

    Bl. Dolapchiev (Dolaptschiew), “Über die Aufstellung und die Anwendbarkeit einigen neuen Formen der Gleichungen der analytischen Dynamik,” Bull. Inst. Polit. din Jasi,13(17), No. 1-2 (1967).

  56. 56.

    Bl. Dolapchiev (Dolaptschiew), “Über die ‘verallgemeinerten’ Gleichungen von Lagrange und deren Zusammenhang mit dem ‘verallgemeinerten’ Prinzip von d'Alembert,” Journ. für die reine und angew. Math.,226 (1967).

  57. 57.

    Bl. Dolapchiev (Dolaptchiev), “Exemple d'application des équations de Nielsen à des systèmes mécaniques non holonomes,” Compt. Rend. Acad. Sci. Paris,267, No. 11 (1968).

  58. 58.

    Bl. Dolapchiev (Dolaptchiev), “Nouvel exemple d'application des équations de Nielsen à des systèmes mécaniques non holonomes,” Compt. Rend. Acad. Sci. Paris,267, No. 12 (1968).

  59. 59.

    Bl. Dolapchiev (Dolaptschiew), “Werwendung der einfachsten Gleichungen Tzenoffschen Typs (Nielsenschan Gleichungen) in der nichtholonomen Dynamik,” ZAMM,49, No. 3 (1969).

  60. 60.

    N. Irimiciuc and S. Deleanu, “Ecuatii generalizate in sensul lui I. Tenov si D. Mangeron pentru sisteme de puncte materials cu mase variabile,” Bull. Inst. Polit. din Jasi,11(15), No. 3-4 (1965).

  61. 61.

    D. Mangeron and S. Deleanu, “Sur une class d'équations de la mécanique analytique au sens de I. Tzénoff,” Compt. Rend. de l'Acad. Bulg. des Sci.,15, No. 1 (1962).

  62. 62.

    D. Mangeron and V. Tepentcharov, “Quelques problèmes concernant les opérateurs généralisés d'Euler-Lagrange,” Bull. Inst. Polit. din Jasi,8(12), No. 3-4 (1962).

  63. 63.

    G. Munteanu, “Sur l'accélération d'ordre quelconque dans le mouvement général du corps rigide,” Bull. Inst. Polit. din Jasi,14(18), No. 3-4 (1968).

  64. 64.

    J. Nielsen, Vorlesungen über elementare Mechanik, Berlin (1935).

  65. 65.

    D. Rašković, “Beitrag zum Problem der physikalischen Dentung des Ruckes,” ZAMM, Sonderheft,45, (1965).

  66. 66.

    E. Tokaci, “Contributii la studiul sistemelor materiale percutate,” Bull. Inst. Polit. din Jasi,11(15), No. 3-4 (1965).

  67. 67.

    E. Tokaci, P. Sima, and V. Olaru, “Sur les équations de Mangeron pour les systèmes matériels de masse discontinument variable,” Bull. Inst. Polit. din Jasi,12(16), No. 3-4 (1966).

  68. 68.

    E. Tokacs, P. Sima, A. Orănescu, V. Olariu, G. Munteanu, T. Gafenco, and G. Deliu, “Estensione del dominio di applicazione delle equazioni di Lagrange-Mangeron allo studio dei moti meccanici continui e discontinui,” Bull. Inst. Polit. din Jasi,13(17), No. 1-2 (1967).

  69. 69.

    N. Tsarvenkov, “Une propriété du champs des accélérations réduites d'ordre ‘m’ dans le mouvement plan,” Bull. Inst. Polit. din Jasi,13(17), No. 3-4 (1967).

  70. 70.

    I. Tsenov (Tzénoff), “Sur une transformation des équations du mouvement des systèmes matériels,” Compt. Rend. de l'Acad. Bulg. des Sci.,9, No. 3 (1956).

  71. 71.

    I. Tsenov (Tzénoff), “Nouvelle démonstration du principle d'Ostrogradski-Hamilton pour les systèmes holonomes et non holonomes,” Compt. Rend. de l'Acad. Bulg. des Sci.,15, No. 1 (1962).

  72. 72.

    I. Tsenov (Tzénoff), “Sur le principe d'Hamilton-Ostrogradski,” Compt. Rend. de l'Acad. Bulg. des Sci.,16, No. 3 (1963).

  73. 73.

    I. Tsenov (Tzénoff), “Sur le principe de Lagrange,” Compt. Rend. de l'Acad. Bulg. des Sci.,16, No. 4 (1963).

  74. 74.

    I. Tsenov (Tzénoff), “Sur le principe de la moindre action (principe de Maupertuis),” Compt. Rend. de l'Acad. Bulg. des Sci.,16, No. 5 (1963).

  75. 75.

    I. Tsenov (Tzenov), “Application du principe de d'Alembert-Lagrange à la déduction des équations du mouvement des systèmes matériels holonomes et non holonomes,” Compt. Rend. de l'Acad. Bulg. des Sci.,18, No. 10 (1965).

  76. 76.

    I. Tsenov (Tzenov), “Équations du mouvement d'un système matériel, subordonné a des liaisons non holonomes linéaires et non linéaires concernant les vitesses et les accélérations généralisées,” Compt. Rend. de l'Acad. Bulg. des Sci.,18, No. 8 (1965).

  77. 77.

    I. Tsenov (Tzenov), “Sur des équations de la dynamique lorsque la fonction des forces depend aussi des vitesses généralisées” Compt. Rend. de l'Acad. Bulg. des Sci.,18, No. 6 (1965).

  78. 78.

    I. Tsenov (Tzenov), “Déduction des équations de mouvement des systèmes matériels sans faire appel aux principes de d'Alembert-Lagrange et de Hölder,” Compt. Rend. de l'Acad. Bulg. des Sci.,19, No. 2 (1966).

  79. 79.

    I. Tsenov (Tzenov), “Les équations de Lagrange et de Nielsen à terme supplémentaire s'appliquent aussi à système non holonome,” Compt. Rend. de l'Acad. Bulg. des Sci.,20, No. 5 (1967).

Download references

Additional information

Kiev Polytechnical Institute. Translated from Prikladnaya Mekhanika, Vol. 9, No. 1, pp. 3–9, January, 1973.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fradlin, B.N., Roshchupkin, L.D. The equations of dynamics (review). Soviet Applied Mechanics 9, 1–7 (1973). https://doi.org/10.1007/BF00888691

Download citation