Advertisement

Applied physics

, Volume 1, Issue 2, pp 93–102 | Cite as

Goldanskii-Karyagin effect versus preferred orientations (texture)

  • H. -D. Pfannes
  • U. Gonser
Contributed Papers

Abstract

There are two main contributions influencing the relative line intensities in a hyperfine pattern of a polycrystalline material: 1) Lattice vibrational anisotropy-Goldanskii-Karyagin effect (GKE) and 2) preferred orientation of the crystallites (texture).

We present the results of experiments and computer calculations of the line-intensity ratios for various orientation distributions. The two competing effects are hard to distinguish from an experimental point of view, and this evaluation should enable one to appreciate the magnitude of their respective contributions. A variety of textures is selected and discussed: For instance, the interesting case where the GKE and the texture produce the same effect on the relative line intensities. Generally speaking, it seems that in many qualitative discussions of quadrupole line asymmetries the influence of texture is underestimated, especially for small deviations from randomness. Conversely, the asymmetry in the spectra is often explained by making the ad hoc assumption of a GKE without realizing that this would require an unrealistic lattice vibration anisotropy.

Index Headings

Mössbauer spectroscopy Goldanskii-Karyagin effect Lattice vibrational anisotropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.Frauenfelder, D.E.Nagle, R.D.Taylor, D.R.F.Cochran, W.M.Visscher: Phys. Rev.126, 1065 (1962)CrossRefADSGoogle Scholar
  2. 2.
    W.Kündig: Nucl. Instr. Methods48, 219 (1967)CrossRefGoogle Scholar
  3. 3.
    B.P.Srivastava, H.N.K.Sarma, D.L.Bhattacharya: Phys. Stat. Sol. (a)10, K 117 (1972)CrossRefGoogle Scholar
  4. 4.
    V.I.Goldanskii, E.F.Marakov, I.P.Suzdalev, I.A.Vinogradov: Phys. Rev. Letters20, 137 (1968)CrossRefADSGoogle Scholar
  5. 5.
    R.M.Housley, U.Gonser, R.W.Grant: Phys. Rev. Letters20, 1279 (1968)CrossRefADSGoogle Scholar
  6. 6.
    V.I.Goldanskii, E.F.Makarov, I.P.Suzdalev, I.A.Vinogradov: Sov. Phys. JETP31, 407 (1970)Google Scholar
  7. 7.
    I.A.Vinogradov, A.M.Pritchard, E.F.Makarov, I.P.Suzdalev: Sol State Commun.8, 965 (1970)CrossRefGoogle Scholar
  8. 8.
    Proc. Conference Application of the Mössbauer Effect, Tihany, Hungary, ed. I.Dészi (Akadémiai Kiado, Budapest 1971)Google Scholar
  9. 9.
    D.L.Nagy, K.Kulscár, I.Dészi, B.Molnár: Hungarian Acad. Sci. KFKI-71-65, Budapest (1971)Google Scholar
  10. 10.
    U.Gonser, M.Ron, H.Ruppersberg, W.Keune, A.Trautwein: Phys. Stat. Sol. (a)10, 493 (1972)CrossRefGoogle Scholar
  11. 11.
    S.G.Cohen, P.Gielen, R.Kaplow: Phys. Rev.141, 423 (1966)CrossRefADSGoogle Scholar
  12. 12.
    U.Gonser: Z. Metallkde.57, 85 (1966)Google Scholar
  13. 13.
    U.Gonser: Proceedings of 2nd Symposium on Low-Energy X- and Gamma-Sources and Applications (ORNL IIc-10, US AEC, 1967)Google Scholar
  14. 14.
    P.A.Flinn, S.L.Ruby, W.L.Kehl: Science143, 1434 (1964)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • H. -D. Pfannes
    • 1
  • U. Gonser
    • 1
  1. 1.Institut für Metallphysik und Metallkunde der Universität des SaarlandesSaarbrückenF. R. Germany

Personalised recommendations