Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Nonlinear shell theory on the basis of the concept of finite rotation

  • 20 Accesses

  • 1 Citations

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    N. A. Alumyaé, “Differential equation of state of thin-walled elastic shells in the postcritical stage,” Prikl. Mat. Mekhan.,13, No. 1, 95–106 (1949).

  2. 2.

    N. A. Alumyaé, “Writing the basic relations of nonlinear shell theory,” Prikl. Mat. Mekhan.,20, No. 1, 136–139 (1956).

  3. 3.

    K. Z. Galimov, Principles of the Nonlinear Theory of Thin-Walled Shells [in Russian], Izd. Kazan. Univ., Kazan' (1975).

  4. 4.

    Ya. F. Kayuk and V. G. Sakhatskii, “Method of constructing the deformation characteristics in nonlinear shell theory,” Prikl. Mekhan.,19, No. 5, 36–41 (1983).

  5. 5.

    A. I. Lur'e, Analytical Mechanics [in Russian], Fizmatgiz, Moscow (1961).

  6. 6.

    A. I. Lur'e, Nonlinear Elasticity Theory [in Russian], Nauka, Moscow (1980).

  7. 7.

    J. G. Simmonds and D. A. Danielson, “Nonlinear theory of shells with a vector of finite rotation and a vectorial stress function,” Proc. ASME, Applied Mechanics [Russian translation], No. 4, 228–236 (1972).

  8. 8.

    K. Z. Galimov, Yu. P. Artyukhin, S. N. Karasev, et al., Shell Theory Taking Account of Transverse Shear [in Russian], Izd. Kazan. Univ., Kazan' (1977).

  9. 9.

    K. F. Chernykh, Linear Shell Theory [in Russian], Vol. 2, Izd. Leningr. Univ., Leningrad (1964).

  10. 10.

    J. G. Simmonds and D. A. Danielson, “Nonlinear shell theory with a finite rotation vector,” Proc. Kon. Ned. Akad. Wetensch., Ser. B, No. 73, 460–478 (1970).

  11. 11.

    W. Pietraszkiewicz, Finite Rotations and Lagrangian Description in the Nonlinear Theory of Shells, Pol. Sci. Publ., Warsaw (1979).

  12. 12.

    W. Pietraszkiewicz and M. L. Szwabowicz, “Entirely Lagrangian nonlinear theory of thin shells,” Arch. Mech.,33, No. 2, 273–288 (1981).

  13. 13.

    W. Pietraszkiewicz and J. Badur, “Finite rotations in the description of continuum deformation,” Int. J. Eng. Sci.,21, No. 9, 1097–1115 (1983).

Download references

Additional information

Institute of Mechanics, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Prikladnaya Mekhanika, Vol. 21, No. 4, pp. 65–73, April, 1985.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kayuk, Y.F., Sakhatskii, V.G. Nonlinear shell theory on the basis of the concept of finite rotation. Soviet Applied Mechanics 21, 366–373 (1985). https://doi.org/10.1007/BF00886584

Download citation

Keywords

  • Shell Theory
  • Finite Rotation
  • Nonlinear Shell
  • Nonlinear Shell Theory