Advertisement

Applied physics

, Volume 22, Issue 2, pp 137–143 | Cite as

Damage anneal of antimony/phosphorus double implants in silicon

  • A. Schmitt
  • G. Schorer
Contributed Papers

Abstract

A method is presented for avoiding the dislocation generation in (100) silicon implanted with phosphorus doses up to 5×1015 ions/cm2 at 50 keV. The residual defects after the damage anneal are considerably reduced if the phosphorus implant is combined with a low dose, e.g. 1×1014 ions/cm2, antimony implant which produces a deeper surface layer of amorphous silicon. It is essential that the phosphorus ions are implanted shallower than the antimony ions, and come to rest within the amorphous layer. Subsequent thermal annealing proceeds by a solid phase epitaxial regrowth mechanism.

PACS

61.70.Tm 61.80.Jh 61.70.Ph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.Tamura: Appl. Phys. Lett.23, 651–653 (1973)CrossRefGoogle Scholar
  2. 2.
    T.Ikeda, M.Tamura, N.Yoshihiro, T.Tokuyama: J. Japan. Soc. Appl. Phys. Suppl.44, 311–316 (1975)Google Scholar
  3. 3.
    M.Tamura, N.Yoshihiro, T.Tokuyama: Appl. Phys.17, 31–39 (1978)CrossRefADSGoogle Scholar
  4. 4.
    N.Yoshihiro, M.Tamura, T.Tokuyama:Ion Implantation in Semiconductors, ed. by S.Namba (Plenum Press, New York 1975) pp. 571–576Google Scholar
  5. 5.
    M.Tamura: Phil. Mag.35, 663–691 (1977)Google Scholar
  6. 6.
    T.H.Yeh, M.L.Joshi: J. Electrochem. Soc.116, 73–77 (1969)Google Scholar
  7. 7.
    R.B.Fair: J. Electrochem. Soc.125, 923–926 (1978)CrossRefGoogle Scholar
  8. 8.
    J.Washburn, G.Thomas, H.J.Queisser: J. Appl. Phys.35, 1909–1914 (1964)CrossRefGoogle Scholar
  9. 9.
    E.T.Yen, B.J.Masters, R.Kastl:Ion Implantation in Semiconductors, ed. by S.Namba (Plenum Press, New York 1975) pp. 501–509Google Scholar
  10. 10.
    F.F.Morehead, B.L.Crowder:Ion Implantation, ed. by F.H.Eisen and L.T.Chadderton (Gordon and Breach, London 1971) pp. 25–30Google Scholar
  11. 11.
    K.Uda, M.Kamoshida: J. Appl. Phys.48, 18–21 (1977)CrossRefADSGoogle Scholar
  12. 12.
    B.L.Crowder: J. Electrochem. Soc.118, 943–952 (1971)Google Scholar
  13. 13.
    L.Csepregi, J.W.Mayer, T.W.Sigmon: Phys. Lett. A54, 157–158 (1975)CrossRefADSGoogle Scholar
  14. 14.
    L.D.Glowinski, K.N.Tu, P.S.Ho: Appl. Phys. Lett.28, 312–313 (1976)CrossRefADSGoogle Scholar
  15. 15.
    Y.Tamminga, W.J.M.J.Josquin: Appl. Phys. Lett.32, 13–15 (1978)CrossRefADSGoogle Scholar
  16. 16.
    A.Bohg: Phys. Stat. Sol (a)46, 445–450 (1978)CrossRefGoogle Scholar
  17. 17.
    L.Csepregi, E.F.Kennedy, T.J.Gallagher, J.W.Mayer, T.W.Sigmon: J. Appl. Phys.48, 4234–4240 (1977)CrossRefADSGoogle Scholar
  18. 18.
    L.Csepregi, J.W.Mayer, T.W.Sigmon: Appl. Phys. Lett.29, 92–93 (1976)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • A. Schmitt
    • 1
  • G. Schorer
    • 1
  1. 1.IBM LaboratoriesBöblingenFed. Rep. Germany

Personalised recommendations