Applied physics

, Volume 2, Issue 4, pp 157–172

Unified theory of Rayleigh-angle phenomena for acoustic beams at liquid-solid interfaces

  • H. L. Bertoni
  • T. Tamir
Invited Papers

Abstract

Various phenomena have been observed when a bounded acoustic beam is incident from a liquid onto the surface of a solid at or near the Rayleigh angle. These phenomena include: a shift of the reflected beam from the position predicted by geometrical acoustics, a null or minimum of intensity within the reflected beam, a 180° phase reversal of the field on either side of the null, a weak trailing field on only one side of the reflected beam and a frequency of least reflection when the solid is lossy. By carefully examining the reflection coefficient for angles in the vicinity of the Rayleight angle, and by taking into account the angular spectrum of plane waves that comprise a bounded beam, a model of the reflection process is developed that explains all of the observed phenomena. This model shows that the various critical-reflection effects result from the interference between a geometrically reflected field and the field of a leaky Rayleigh wave, which is excited by the incident beam. Moreover, this model resolves the conflict between various explanations made for these phenomena in the past; in particular, it is found that Schoch's classical description of a laterally displaced reflected beam is valid only for beams having a large width.

Index Headings

Acoustic waves Geometrical acoustics Leaky Rayleigh waves Reflection at liquid-solid interfaces Surface waves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Goos, H. Haenchen: Ann. Physik1 (6), 333 (1947)ADSGoogle Scholar
  2. 2.
    A. Schoch: Ergeb. Exakt. Naturwiss.23, 127 (1950)MathSciNetGoogle Scholar
  3. 3.
    H.K.V. Lotsch: Optik32, 116, 189, 299 and 553 (1970–71)Google Scholar
  4. 4.
    A. Schoch: Acustics2, 18 (1952)Google Scholar
  5. 5.
    R.F. Smith: Lateral displacement of an ultrasonic beam upon reflection from a solid immersed in a liquid. Tech. Rept. No. 6, Univ. of Tennessee, Knoxville, Tenn. (1968)Google Scholar
  6. 6.
    O.I. Diachok, W.G. Mayer: IEEE Trans.SU-16, 219 (1969)Google Scholar
  7. 7.
    O.I. Diachok, W.G. Mayer: J. Acoust. Soc. Am.47, 155 (1970)CrossRefGoogle Scholar
  8. 8.
    F.L. Becker, R.L. Richardson: InResearch Techniques in Nondestructive Testing, ed. by R. S. Sharpe, (Academic Press, London 1970) Ch. 4Google Scholar
  9. 9.
    F.L. Becker, R.L. Richardson: J. Acoust. Soc. Am.51, 1609 (1971)CrossRefGoogle Scholar
  10. 10.
    F.L. Becker: J. Appl. Phys.42, 199 (1971)CrossRefADSGoogle Scholar
  11. 11.
    J.H. Smith: Energy redistribution in an ultrasonic beam reflected at a liquid-solid interface, Rept. No. Y-1798, Union Carbide Corp., Nuclear Div., Oak Ridge, Tenn. (1971)Google Scholar
  12. 12.
    W.G. Neubauer: J. Appl. Phys.44, 48 (1973)CrossRefADSGoogle Scholar
  13. 13.
    G. Mott: J. Acoust. Soc. Am.50, 819 (1971)CrossRefGoogle Scholar
  14. 14.
    V.M. Merkulova: Sov. Phys. Acoustics15, 404 (1970)Google Scholar
  15. 15.
    L.M. Brekhovskikh:Waves in Lavered Media (Academic Press, New York 1960) Section 8, p. 100Google Scholar
  16. 16.
    T. Tamir, H.L. Berton: J. Opt. Soc. Am.61, 1397 (1971)Google Scholar
  17. 17.
    —:Waves in Lavered Media (Academic Press, New York 1960), Ref. [15], Section 4.2, p. 30Google Scholar
  18. 18.
    W.M. Ewing, W.C. Jardetzky, F. Press:Elastic Waves in Layered Media (McGraw-Hill, New York 1957), Chapter 3, p. 14MATHGoogle Scholar
  19. 19.
    — Ref. [15], Section 4.6, p. 38Google Scholar
  20. 20.
    I.A. Viktorov:Rayleigh and Lamb Waves (Plenum Press, New York 1967) Sec. I.6, p. 46Google Scholar
  21. 21.
    T. Tamir: Leaky-wave antennas, inAntenna Theory, Pt. 2 ed. by R. E. Collin and F. J. Zucker, (McGraw-Hill, New York 1959) Chapter 20, p. 259Google Scholar
  22. 22.
    T. Tamir: Optik38, 271 (1973)Google Scholar
  23. 23.
    R.J. Hallermeier, O.I. Diachok: J. Appl. Phys.41, 4763 (1970)CrossRefADSGoogle Scholar
  24. 24.
    Handbook of Mathematical Functions, ed. by M. Abramowitz I.A. Stegun, (Dover Publ., New York 1965), Chapter 7, p. 297Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • H. L. Bertoni
    • 1
  • T. Tamir
    • 1
  1. 1.Department of Electrical Engineering and ElectrophysicsPolytechnic Institute of New YorkBrooklynUSA

Personalised recommendations