, Volume 1, Issue 1, pp 51–65 | Cite as

Cellular spaces

  • Wolfgang Merzenich


This paper is an introduction into the theory of cellular spaces. From the more general model of nets of abstract cells which are interpreted by finite automata, it is shown how the model of cellular spaces is achieved by specialization. Cellular spaces are extremely homogeneous in function and in geometry. The relation between local and global behavior is regarded as the main topic of the theory. After a formal definition of cellular spaces, it is shown that not all functions of the configuration space are induced by cellular spaces. In addition, the Garden-of-Eden problem is discussed, and a simple self-reproduction property is explained.

Key words

Cellular spaces Self-reproduction Abstract cells Garden-of-Eden configurations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Amoroso S., Lieblein, E., and Yamada, H., ‘A Unifying Framework for the Theory of Iterative Arrays of Machines’, 1969, ACM Sympos. Theory of Computing Conf. Rec. Marina del Rey Calif. May 5–7, pp. 259–269.Google Scholar
  2. [2]
    Amoroso, S., and Cooper, G., ‘Tesselation Structures for Reproduction of Arbitrary Patterns’,J. Comp. Syst. Sci. 5, (1971) 455–464.Google Scholar
  3. [3]
    Codd, E. F.,Cellular Automata, ACM Monograph Series, Academic Press, New York, (1968).Google Scholar
  4. [4]
    Gardner, M., ‘On Cellular Automata, Self-Reproduction, the Garden-of-Eden and the Game Life’,Scientific American 224, (1971) 112–117.Google Scholar
  5. [5]
    Harrison, M. A.,Introduction to Switching and Automata Theory, McGraw-Hill, New York, 1965.Google Scholar
  6. [6]
    Hartmannis J., and Stearns R. E.,Algebraic Theory of Sequential machines, Prentice-Hall, Englewood Cliffs, 1965.Google Scholar
  7. [7]
    McCulloch, W., and Pitts, W., ‘Logical Calculus of the Ideas Immanent in Nervous Activity’,Bull. math. Biophys. 5, (1943) 115–133.Google Scholar
  8. [8]
    Merzenich, W., ‘Algebraische Charakterisierung additiver Automaten-Arrays’,Berichte der Gesellschaft für Mathematik und Datenverarbeitung Nr. 88, Bonn, (1974).Google Scholar
  9. [9]
    Moore E. F., ‘Machine Models of Self-Reproduction’,Proc. Sym. Appl. Math., Amer. Math. Soc.,14, (1962) 17–33.Google Scholar
  10. [10]
    Myhill J., ‘The Converse to Moore's Garden-of-Eden Theorem’Proc. Amer. Math. Soc. 14, (1963) 685–686.Google Scholar
  11. [11]
    Neumann, J. von,Theory of Self-Reproducing Automata, ed. by A. W. Burks, University of Illinois Press, Urbana, 1966.Google Scholar
  12. [12]
    Ostrand, T. J., ‘Pattern Reproduction in Tesselation Automata of Arbitrary Dimension’,J. Comp. Syst. Sci. 5, (1971) 623–628.Google Scholar
  13. [13]
    Richardson, D., ‘Tesselations with Local Transformations’,J. Comp. Syst. Sci. 6, (1972) 373–388.Google Scholar
  14. [14]
    Smith, A. R., III, ‘Simple Computation-Universal Cellular Spaces’,journal of the Association for Computing Machinery 18, (1971) 339–353.Google Scholar
  15. [15]
    Yamada, H., and Amoroso, S., ‘A Completeness Problem for Pattern Generation in Tesselation Automata’,j. Comp. Syst. Sci. 4, (1970) 137–176.Google Scholar
  16. [16]
    Yamada H., and Amoroso S., ‘Tesselation Automata’,Information and Control 14, (1969) 299–317.Google Scholar
  17. [17]
    Zuse, K.,Rechnender Raum, Schriften zur Datenverarbeitung, Vol. 1, Vieweg Verlag, Braunschweig, 1969.Google Scholar

Copyright information

© D. Reidel Publishing Company 1980

Authors and Affiliations

  • Wolfgang Merzenich
    • 1
  1. 1.Lehrstuhl Informatik IUniversität DortmundDortmund 50F.R.G.

Personalised recommendations