Applied physics

, Volume 14, Issue 2, pp 123–139 | Cite as

Solar energy conversion with fluorescent collectors

  • A. Goetzberger
  • W. Greube
Invited Paper


A new principle for solar energy conversion is proposed and evaluated theoretically. Collection and concentration of direct and diffuse radiation is possible by the use of a stack of transparent sheets of material doped with fluorescent dyes. High efficiency of light collection can be achieved by light guiding and special design of collectors. The optical path length in a triangular collector is computed.

In combination with solar cells this type of collector offers the advantage of separating the various fractions of light and converting them with solar cells with different bandgaps. Theoretical conversion efficiency under optimum conditions is 32% for a system with four semiconductors.

Thermal energy conversion offers several advantages over conventional collectors: High temperature and efficiency even under weak illumination, separation of heat transport and radiation collection, low thermal mass. Thermal efficiency is computed to be between 42% and 60%. Very attractive appear hybrid systems for generation of thermal and electric energy. An estimate of the economics of electricity generation shows that due to the concentration costs can be much lower than possible today. With the use of only silicon cells the breakeven point of $0.5/W is almost reached.

Practical difficulties to be solved are: Synthesis of dyes with stringent requirements, identification of plastic materials with high transparency and development of solar cells with higher bandgaps.

PACS Codes

84.60 85.60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.E.Backus: J. Vac. Science and Technology12, 1032 (1975)CrossRefADSGoogle Scholar
  2. 2.
    A.Goetzberger, W.Greubel: German Patent Application P 2620115.0-33 (1976)Google Scholar
  3. 3.
    W.Greubel, G.Baur: Appl. Phys. Lett. (to be published)Google Scholar
  4. 4.
    J.B.Birks:The Theory and Practice of Scintillation Counting. (Pergamon Press, London 1964)Google Scholar
  5. 5.
    W.A.Shureliff, R.C.Jones: J. Opt. Soc. Am.39, 912 (1949)Google Scholar
  6. 6.
    G.Keil: J. Appl. Phys.40, 3544 (1969)CrossRefADSGoogle Scholar
  7. 7.
    G.Keil: Nuclear Instruments and Methods87, 111–123 (1970)CrossRefGoogle Scholar
  8. 8.
    W.H.Weber, J.Lambe: Appl. Opt.15, 2299 (1976)ADSGoogle Scholar
  9. 9.
    I.B.Berlman:Handbook of Fluorescence Spectra of Aromatic Molecules. 2nd Ed. (Academic Press, New York, 1971)Google Scholar
  10. 10.
    W.Wolf: J. Vac. Sci. Tech.12, 984 (1975)CrossRefADSGoogle Scholar
  11. 11.
    For a recent review of solar cell physics see: H.J.Hovel:Semiconductors and Semimetals, Vol. 2,Solar Cells (Academic Press, New York 1975)Google Scholar
  12. 12.
    E.D.Jackson: Trans. Conf. on the Use of Solar Energy, Tucson, (1955) (Univ. Arizona Press,5, 122 (1958)Google Scholar
  13. 13.
    W.Wolf: Proc IRE48, 1246 (1960)CrossRefGoogle Scholar
  14. 14.
    Vieweg/Esser:Polymethacrylate (Hanser Verlag, München 1975)Google Scholar
  15. 15.
    Landolt-Börnstein: Vol. 3:Luminescence of Organic Substances (Springer Berlin-Heidelberg-New York 1967) p. 285Google Scholar
  16. 16.
    H.Kallmann, M.Furst: Nucleonics8, 32 (1951)Google Scholar
  17. 17.
    F.Sterzer: RCA Review36 316 (1975)ADSGoogle Scholar
  18. 18.
    A.Lindmeyer, J.F.Allison: Comsat. Tech. Review3, 1 (1973)Google Scholar
  19. 19.
    W.James, R.C.Moon: Appl. Phys. Lett.26, 467 (1974)CrossRefADSGoogle Scholar
  20. 20.
    J.M.Woodall, H.J.Hovel: J. Vac Sci. Tech.12, 1000 (1975)CrossRefADSGoogle Scholar
  21. 21.
    J.M.Woodall, H.J.Hovel: Appl. Phys. Lett.21, 379 (1972)CrossRefGoogle Scholar
  22. 22.
    J.G.Fossum, D.G.Schueler: IEDM Tech. Digest, 453 (1976)Google Scholar
  23. 23.
    J.H.H.Heinbockel, A.S.Roberts: Proc. Int. Symp. Solar Energy, Electrochem. Soc. (1976), p. 170Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • A. Goetzberger
    • 1
  • W. Greube
    • 1
  1. 1.Institut für Angewandte Festkörperphysik der Fraunhofer-GesellschaftFreiburgFed. Rep. Germany

Personalised recommendations