Applied physics

, Volume 14, Issue 3, pp 235–254 | Cite as

Analysis and design of grating couplers

  • T. Tamir
  • S. T. Peng
Invited Papers


Based on an accurate perturbation analysis of the guiding properties of dielectric gratings, simple design criteria are developed for grating couplers which transfer the energy of a beam into or out of an optical waveguide. Gratings having arbitrary groove shapes are considered and explicit formulae are given for the leakage parameters of gratings with symmetric profiles. The results cover TEv and TMv modes and they apply to both shallow and deep grating grooves. The variation of the leakage parameter α in rectangular gratings is examined in detail; these rectangular gratings are then used as basic configurations for predicting the characteristics of other grating profiles. Particular attention is given to trapezoidal and triangular profiles and gratings with asymmetric profiles are also discussed.

PACS Codes

42.82 84 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For background and an extensive bibliography up to early 1975, see T. Tamir (ed.):Integrated Optics, Topics inApplied Physics 7 (Springer, New York, Heidelberg, Berlin 1975), Chap. 3, p. 84Google Scholar
  2. 2.
    N. Neviere, R. Petit, M. Cadilhac: Opt. Commun.8, 113 (1973)CrossRefADSGoogle Scholar
  3. 3.
    S. T. Peng, T. Tamir: IEEE Trans. MTT-23, 123 (1975)CrossRefGoogle Scholar
  4. 4.
    K. Ogawa, W. S. C. Chang, B. L. Sopori, F. J. Rosenbaum: IEEE J. QE-9, 29 (1973)CrossRefGoogle Scholar
  5. 5.
    K. Sakuda, A. Yariv: Opt. Commun.8, 1 (1973)CrossRefADSGoogle Scholar
  6. 6.
    V. A. Kiselev: Sov. J. Quantum Electron.4, 872 (1975)CrossRefGoogle Scholar
  7. 7.
    W. W. Rigrod, D. Marcuse: IEEE J. QE-12, 673 (1976)CrossRefGoogle Scholar
  8. 8.
    J. A. Harris, R. K. Winn, D. G. Dalgoutte: Appl. Opt.11, 2234 (1972)ADSGoogle Scholar
  9. 9.
    D. G. Dalgoutte, C. D. W. Wilkinson: Appl. Opt.14, 2983 (1975)ADSGoogle Scholar
  10. 10.
    C. C. Ghizoni, B. U. Chen, C. L. Tang: IEEE J. QE-12, 69 (1976)CrossRefGoogle Scholar
  11. 11.
    K. Handa, S. T. Peng, T. Tamir: Appl. Phys.5, 325 (1975)CrossRefADSGoogle Scholar
  12. 12.
    S. T. Peng, T. Tamir: Appl. Phys.7, 35 (1975)CrossRefADSGoogle Scholar
  13. 13.
    W. Streifer, D. R. Scifres, R. D. Burnham: IEEE J. QE-12, 422 (1976)CrossRefGoogle Scholar
  14. 14.
    W. Streifer, R. D. Burnham, R. D. Scifres: IEEE J. QE-12, 494 (1976)CrossRefGoogle Scholar
  15. 15.
    W. Streifer, D. R. Scifres, R. D. Burnham, R. I. MacDonald: IEEE J. QE-13, 67 (1977)CrossRefGoogle Scholar
  16. 16.
    F. T. Stone, S. Austin: IEEE J. QE-12, 727 (1976)CrossRefGoogle Scholar
  17. 17.
    See, for example, Fig. 2.7 in Ref. 1,, p. 22Google Scholar
  18. 18.
    D. W. Fradin, P. K. Cheo, S. T. Peng, T. Tamir: J. Opt. Soc. Am.66, 292 (1976)ADSGoogle Scholar
  19. 19.
    S. T. Peng, T. Tamir: “Effects of groove profile on the performance of dielectric grating couplers”,Proc. Symp. Optical and Acoustical Micro-Electronics, (Polytechnic Press, New York, 1974) p. 377Google Scholar
  20. 20.
    S. T. Peng, T. Tamir: Optics Commun.11, 405 (1974)CrossRefADSGoogle Scholar
  21. 21.
    D. Marcuse: Bell Syst. Tech. J.55, 1295 (1976)Google Scholar
  22. 22.
    T. Aoyagi, Y. Aoyagi, S. Namba: Appl. Phys. Lett.29, 303 (1976)CrossRefADSGoogle Scholar
  23. 23.
    S. T. Peng: “Convergence of iteration procedure for the solution of dielectric grating problems”, to be publishedGoogle Scholar
  24. 24.
    T. Tamir, S. T. Peng: “Network methods for integrated optics devices”,Proc. Intern. Conf. Applic. Holography and Optical Data Processing (Pergamon Press, Oxford, 1977)Google Scholar
  25. 25.
    See, for example, Sect. 2.1.4 in Ref. 1, p. 27Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • T. Tamir
    • 1
  • S. T. Peng
    • 1
  1. 1.Department of Electrical EngineeringPolytechnic Institute of New YorkBrooklynUSA

Personalised recommendations