Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Contribution to the solution of spatial problems of the elasticity theory of a transversally isotropic medium for noncanonical regions

  • 11 Accesses

  • 1 Citations

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    A. N. (O. M.) Guz', “An approximate method of determining stress concentrations around curvilinear holes in shells,” Prikl. Mekh. [in Ukrainian],8, No. 6, 605–612 (1962).

  2. 2.

    A. N. (O. M.) Guz', “A method of solving three-dimensional linear problems in the mechanics of continuous media for noncannonical regions,” Dop. Akad. Nauk UkrSSR, Ser. A, No. 4, 352–355 (1970).

  3. 3.

    D. F. Lyalyuk and Yu. N. Nemish, “An approximate method of investigating the stress state of thick-walled noncanonical shells of revolution,” in: Transactions of the Ninth All-Union Conference on Shell and Plate Theory [in Russian], Sudostroenie, Leningrad (1975), pp. 280–282.

  4. 4.

    N. M. Matveev, Methods of Integrating Ordinary Differential Equations [in Russian], Vysshaya Shkola, Moscow (1976).

  5. 5.

    Yu. N. Nemish, “An approximate solution of spatial problems of elasticity theory for a transversally isotropic medium,” Prikl. Mekh.,5, No. 8, 26–34 (1969).

  6. 6.

    Yu. N. Nemish, “The method of ‘surface-shape perturbation’ in spatial problems of the mechanics of deformable media,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 5, 17–26, (1975).

  7. 7.

    Yu. N. Nemish, V. N. Nemish, and P. F. Yarema, “The distribution stresses near noncanonical surfaces,” Prikl. Mekh.,7, No. 12, 41–50 (1971).

  8. 8.

    G. Huntington, “Elastic constants of crystals,” Usp. Fiz. Nauk,74, No. 3, 462–520.

  9. 9.

    V. T. Chen, “Some problems for elastic materials with spherical isotropy,” Trans. ASME, Appl. Mech.,33, No. 3, 71–79 (1966).

Download references

Additional information

Institute of Mechanics, Academy of Sciences of the Ukrainian SSR, Kiev. Ternopol'skii Finance-Economics Institute. Translated from Prikladnaya Mekhanika, Vol. 12, No. 12, pp. 73–82, December, 1976.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nemish, Y.N., Nemish, V.N. Contribution to the solution of spatial problems of the elasticity theory of a transversally isotropic medium for noncanonical regions. Soviet Applied Mechanics 12, 1262–1270 (1976). https://doi.org/10.1007/BF00882702

Download citation

Keywords

  • Elasticity Theory
  • Isotropic Medium
  • Spatial Problem
  • Noncanonical Region