Metamedicine

, Volume 1, Issue 3, pp 325–367

Carnap's inductive probabilities as a contribution to decision theory

  • Joachim Hornung
Article
  • 40 Downloads

Abstract

Common probability theories only allow the deduction of probabilities by using previously known or presupposed probabilities. They do not, however, allow the derivation of probabilities from observed data alone. The question thus arises as to how probabilities in the empirical sciences, especially in medicine, may be arrived at. Carnap hoped to be able to answer this question byhis theory of inductive probabilities. In the first four sections of the present paper the above mentioned problem is discussed in general. After a short presentation of Carnap's theory it is then shown that this theory cannot claim validity for arbitrary random processes. It is suggested that the theory be only applied to binomial and multinomial experiments. By application of de Finetti's theorem Carnap's inductive probabilities are interpreted as consecutive probabilities of the Bayesian kind. Through the introduction of a new axiom the decision parameter λ can be determined even if no a priori knowledge is given. Finally, it is demonstrated that the fundamental problem of Wald's decision theory, i.e., the determination of a plausible criterion where no a priori knowledge is available, can be solved for the cases of binomial and multinomial experiments.

Key words

Probability theories Inductive probabilities Decision theory Bayes Carnap de Finetti 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayes, Th.: 1763, ‘An essay towards solving a problem in the doctrine of chances’,Philosophical Transactions of the Royal Society of London 53, 370–418. Reprinted inBiometrika 45 (1958) 293–315, and in W. E. Deming,Facsimiles of Two Papers by Bayes, Hafner Publ. Co., New York/London, 1963.Google Scholar
  2. Braithwaite, R. B.: 1953,Scientific Explanation, Cambridge University Press, Cambridge, England.Google Scholar
  3. Braithwaite, R. B.: 1957, ‘On unknown probabilities’, in S. Körner (ed.),Observation and Interpretation, Butterworth, London, pp. 3–11.Google Scholar
  4. Bühlmann, H., Loeffel, H., and Nievergelt, E.: 1975,Entscheidungs-und Spieltheorie, Springer-Verlag, Berlin/Heidelberg/New York.Google Scholar
  5. Carnap, R.: 1950,Logical Foundations of Probability, The University of Chicago Press, Chicago.Google Scholar
  6. Carnap, R.: 1952,The Continuum of Inductive Methods, The University of Chicago Press, Chicago.Google Scholar
  7. Carnap, R.: 1971, ‘A basic system of inductive logic, Part I’, in R. Carnap and R. C. Jeffrey (eds.),Studies in Inductive Logic and Probability, University of California Press, Berkeley/Los Angeles/London, pp. 33–165.Google Scholar
  8. Carnap, R.: 1971a, ‘Inductive logic and rational decisions’ in R. Carnap and R. C. Jeffrey (eds.),Studies in Inductive Logic and Probability, University of California Press, Berkeley/Los Angeles/London, pp. 5–31.Google Scholar
  9. Carnap, R., and Jeffrey, R. C. (eds.): 1971,Studies in Inductive Logic and Probability, University of California Press, Berkeley/Los Angeles/London.Google Scholar
  10. Carnap, R., and Stegmüller, W.: 1959,Induktive Logik und Wahrscheinlichkeit, Springer-Verlag, Wien.Google Scholar
  11. de Finetti, B.: 1964, ‘Foresight: Its logical laws, its subjective sources’, in H. E. Kyburg, Jr., and H. E. Smokler (eds.),Studies in Subjective Probability, John Wiley and Sons, Inc., New York/London/Sydney, pp. 93–158.Google Scholar
  12. de Finetti, B.: 1974/75,Theory of Probability, two volumes, John Wiley and Sons, London. (For the de Finetti theorem, see Vol. 2, pp. 211–224.)Google Scholar
  13. DeGroot, M. H.: 1970,Optimal Statistical Decisions, McGraw-Hill Book Company, New York.Google Scholar
  14. Feller, W.: 1968/69,An Introduction to Probability Theory and Its Applications, two volumes, John Wiley and Sons, Inc., New York/London/Sydney. (For the de Finetti theorem, see Vol. 2, pp. 225–227.)Google Scholar
  15. Gaifman, H.: 1971, ‘Applications of de Finetti's theorem to inductive logic’, in R. Carnap and R. C. Jeffrey (eds.),Studies in Inductive Logic and Probability, University of California Press, Berkeley/Los Angeles/London, pp. 235–251.Google Scholar
  16. Good, I. J.: 1965,The Estimation of Probabilities. An Essay on Modern Bayesian Methods, Research Monograph No. 30, The M. I. T. Press, Cambridge, Massachusetts.Google Scholar
  17. Goodman, N.: 1955,Fact, Fiction, and Forecast, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  18. Hacking, I.: 1965,Logic of Statistical Inference, Cambridge University Press, Cambridge, England.Google Scholar
  19. Hacking, I.: 1969, ‘Linguistically invariant inductive logic’,Synthese 20, 25–47.Google Scholar
  20. Hempel, C. G.: 1945, ‘Studies in the logic of confirmation’,Mind 54, 1–12 and 97–121.Google Scholar
  21. Hintikka, J.: 1966, ‘A two-dimensional continuum of inductive methods’, in J. Hintikka and P. Suppes (eds.),Aspects of Inductive Logic, North-Holland Publ. Co., Amsterdam, pp. 113–132.Google Scholar
  22. Hintikka, J.: 1970, ‘Unknown probabilities, Bayesianism, and de Finetti's representation theorem’,Boston Studies in the Philosophy of Science VIII, pp. 325–341.Google Scholar
  23. Hintikka, J., and Suppes, P. (eds.): 1966,Aspects of Inductive Logic, North-Holland Publ. Co., Amsterdam.Google Scholar
  24. Hornung, J.: 1970,Über Induktive Logik und Wahrscheinlichkeit, Habilitationsschrift, Freie Universität Berlin.Google Scholar
  25. Hornung, J.: 1971, ‘Ein lokaler Grenzverteilungssatz’, unpublished manuscript.Google Scholar
  26. Hornung, J.: 1977, ‘Kritik der Signifikanztests’,Metamed 1, 325–345.Google Scholar
  27. Hornung, J.: 1981, ‘Zur Anwendung der Entscheidungstheorie in der Medizin’, in preparation.Google Scholar
  28. Humburg, J.: 1971, ‘The principle of instantial relevance’, in R. Carnap and R. C. Jeffrey (eds.),Studies in Inductive Logic and Probability, University of California Press, Berkeley/Los Angeles/London, pp. 225–233.Google Scholar
  29. Jeffrey, R. C.: 1971, ‘Probability measures and integrals’, in R. Carnap and R. C. Jeffrey (eds.),Studies in Inductive Logic and Probability, University of California Press, Berkeley/Los Angeles/London, pp. 167–221.Google Scholar
  30. Kemeny, J. G.: 1955, ‘Fair bets and inductive probabilities’,The Journal of Symbolic Logic 20, 263–273.Google Scholar
  31. Kolmogoroff, A. N.: 1933, ‘Grundbegriffe der Wahrscheinlichkeitsrechnung’,Ergebnisse der Mathematik 2, 195–262.Google Scholar
  32. Kutschera, R. v.: 1972,Wissenschaftstheorie, Bd. I und II, UTB, Wilhelm Fink Verlag, München.Google Scholar
  33. Kyburg, Jr., H. E., and Smokler, H. E.: 1964,Studies in Subjective Probability, John Wiley and Sons, Inc., New York/London/Sydney.Google Scholar
  34. Lehmann, R. S.: 1955, ‘On confirmation and rational betting’,The Journal of Symbolic Logic 20, 251–261.Google Scholar
  35. Luce, R. D., and Raiffa, H.: 1967,Games and Decisions, John Wiley and Sons, Inc., New York/London/Sydney.Google Scholar
  36. Miller, E.: 1966/67, ‘A paradox of information’,British Journal for the Philosophy of Science 17, 59–61.Google Scholar
  37. Mises, R. v.: 1964,Mathematical Theory of Probability and Statistics, Academic Press, New York/London. (First, German edition 1928)Google Scholar
  38. Popper, K. R.: 1976,Logik der Forschung, J. C. B. Mohr, Tübingen.Google Scholar
  39. Savage, L. J.: 1954,The Foundation of Statistics, John Wiley and Sons, New York.Google Scholar
  40. Schilpp, P. A. (ed.): 1963,The Philosophy of Rudolf Carnap, Cambridge University Press, London.Google Scholar
  41. Shimony, A.: 1955, ‘Coherence and the axioms of confirmation’,The Journal of Symbolic Logic 20, 1–28.Google Scholar
  42. Stegmüller, W.: 1971, ‘Das Problem der Induktion: Humes Herausforderung und moderne Antworten’, in H. Lenk (ed.),Neue Aspekte der Wissenschaftstheorie, Vieweg, Braunschweig, pp. 13–74.Google Scholar
  43. Stegmüller, W.: 1973,Personelle und Statistische Wahrscheinlichkeit, Halbband 1 und 2, Springer-Verlag, Berlin/Heidelberg/New York.Google Scholar
  44. Wald, A.: 1950,Statistical Decision Functions, John Wiley and Sons, New York.Google Scholar

Copyright information

© D. Reidel Publishing Company 1980

Authors and Affiliations

  • Joachim Hornung
    • 1
  1. 1.Institut für Medizinische StatistikKlinikum Steglitz der FU BerlinBerlin 45

Personalised recommendations