Pure and Applied Geophysics

, Volume 106, Issue 1, pp 1385–1399 | Cite as

A discussion of the chemistry of some minor constituents in the stratosphere and troposphere

  • Paul Crutzen


A discussion is given of atmospheric reactions in the H2O−CH4−O2−O3−NO x system. In the lower troposphere such reactions may lead to significant production of ozone. Their role in the odd hydrogen balance, especially of the troposphere and lower stratosphere, is discussed. CH3OH may be an intermediate in the oxidation cycle of methane, especially in the cold stratosphere. Its photodissociation into H2 and CH2O may consequently provide an important source for stratospheric H2. Catalytic photochemical chains of reactions involving NO x and HO x may also lead to tropospheric destruction of ozone. Due to lack of knowledge it is not possible at present to evaluate the importance of the before-mentioned reactions.

With the aid of model calculations it is indicated that stratospheric ozone is most sensitive to changes in the adopted lower boundary values of N2O and that an increase in water vapour concentrations in the lower stratosphere will indeed cause some increase in ozone as predicted.

Fluctuations in the flux of solar radiation near 190 nm may cause significant variations in stratospheric ozone concentrations.


Ozone Lower Troposphere Minor Constituent Total Ozone Stratospheric Ozone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Ackerman andC. Muller,Stratospheric methane and nitrogen dioxide from infrared spectra, Pure and Appl. Geophys.106–108 (1973), 1325.CrossRefGoogle Scholar
  2. [2]
    P. Crutzen,The influence of nitrogen oxides on the atmospheric ozone content, Quart. J. Roy. Met. Soc.96 (1970), 320–327.CrossRefGoogle Scholar
  3. [3]
    H. Johnston,Redvction of stratospheric ozone by nitrogen oxide catalysis from SST exhaust, Science173 (1971), 517–522.CrossRefGoogle Scholar
  4. [4]
    P. Crutzen,Ozone production rates in oxygen-hydrogen-nitrogen oxide atmosphere, J. Geophys. Res.76 (1971), 7311–7327.CrossRefGoogle Scholar
  5. [5]
    H. Johnston,The Concorde, oxides of nitrogen, and stratospheric ozone, Search3 (1972), 276–282.Google Scholar
  6. [6]
    P. Crutzen,SST's—A threat to Earth's ozone shield, Ambiol1 (1972), 41–51.Google Scholar
  7. [7]
    S. Chapman,A theory of upper atmospheric ozone, Quart. J. Roy. Met. Soc.3 (1930), 103.Google Scholar
  8. [8]
    M. Nicolet,Ozone and hydrogen reactions, Ann. Geophys.26 (1970), 531–546.Google Scholar
  9. [9]
    K. F. Preston andR. F. Barr,Primary processes in the photolysis of nitrous oxide, J. Chem. Phys.54 (1971), 3347.CrossRefGoogle Scholar
  10. [10]
    R. I. Greenberg andJ. Heickien,Reaction of O(1 D) with N 2 O, Int. J. Chem. Kin.2 (1970), 185.CrossRefGoogle Scholar
  11. [11]
    M. B. McElroy andJ. C. McConnell,Nitrous oxide: A natural source of stratospheric NO, J. Atm. Sci.28 (1971), 1095–1098.CrossRefGoogle Scholar
  12. [12]
    P. Warneck,Cosmic radiation as a source of odd nitrogen in the stratosphere, J. Geophys. Res.77 (1972), 6589–6591.CrossRefGoogle Scholar
  13. [13]
    C. E. Junge,Air Chemistry and Radioactivity (Academic Press, New York 1963).Google Scholar
  14. [14]
    D. G. Murcray, T. G. Kyle, F. H. Murcray andW. J. Williams,Presence of HNO 3 in the upper atmosphere, J. Opt. Soc. America59 (1969), 1131–1134.CrossRefGoogle Scholar
  15. [15]
    D. F. Strobel,Odd nitrogen in the mesosphere, J. Geophys. Res.76 (1971), 8384–8386.CrossRefGoogle Scholar
  16. [16]
    G. Brasseur andS. Cieslik, On the Absorption of Nitric Oxide Bands in the Mesosphere and its Distribution in the Stratosphere, Paper presented at this meeting, August 1972.Google Scholar
  17. [17]
    A. B. Callear andI. W. M. Smith,Fluorescence of nitric oxide, Trans. Far. Soc.60 (1964), 96–111.CrossRefGoogle Scholar
  18. [18]
    H. Johnston,Formation and stability of nitric acid in the stratosphere, J. Atm. Sciences, to be published.Google Scholar
  19. [19]
    H. Levy,Normal atmosphere: Large radical and formaldehyde concentrations predicted, Science173 (1971), 141–143.CrossRefGoogle Scholar
  20. [20]
    H. Levy,Photochemistry of the lower troposphere, Planet. Space Sci.20 (1972), 919–935.CrossRefGoogle Scholar
  21. [21]
    B. Weinstock andH. Niki,Carbon monoxide balance in nature, Science176 (1972), 290–292.CrossRefGoogle Scholar
  22. [22]
    J. C. McConnell, M. B. McElroy andS. C. Wofsy,Natural sources of atmospheric CO, Nature233 (1971), 187–188.CrossRefGoogle Scholar
  23. [23]
    H. Levy,Photochemistry of minor constitutents in the troposphere, J. Atm. Science, in press.Google Scholar
  24. [24]
    S. C. Wofsy, J. C. McConnell andM. B. McElroy,Atmospheric CH 4,CO, and CO 2, J. Geophys. Res.77 (1972), 477–4493.CrossRefGoogle Scholar
  25. [25]
    D. F. Heath, Satellite Observations of the Long-Term Variability and Intensity of the Near and Far Ultraviolet Solar Flux, Paper presented at the IUGG Conference, Moscow, August 1971.Google Scholar
  26. [26]
    Report of the Study of Man's Impact on Climate (The MIT Press, Cambridge, Mass. 1971), p. 276.Google Scholar
  27. [27]
    A. E. Bainbridge andL. E. Heidt,Measurement of methane in the tropopause and lower stratosphere, Tellus18 (1966), 221.CrossRefGoogle Scholar
  28. [28]
    E. Robinson andR. C. Robbins,Sources, Abundance, and Fate of Gaseous, Atmospheric Pollutants, Stanford Research Project PR-6755 (American Petroleum Institute, Washington, D.C. 1968).Google Scholar
  29. [29]
    P. Fabian andC. E. Junge,Global rate of ozone destruction at the earth's surface, Arch. Met. Geoph. Biok. A,19 (1970), 161–172.CrossRefGoogle Scholar
  30. [30]
    A. W. Brewer andA. W. Wilson,The regions of formation of atmospheric ozone, Quart. J. Roy. Met. Soc.94 (1968), 249–265.CrossRefGoogle Scholar
  31. [31]
    C. W. Spicer, A. Villa, H. A. Wiebe andJ. Heicklen,The Reactions of Methylperoxy radicals with NO and NO 2, CAES Report No 223-71 (Center for Air Environment Studies, The Pennsylvania State University, 1972), 30 pp.Google Scholar
  32. [32]
    H. A. Wiebe, A. Villa, T. M. Hellman andJ. Heicklen,Photolysis of Methyl Nitrite in the Presence of NO, NO 2 , and O 2, CASE Report No 170-70 (Center for Air Environment Studies, The Pennsylvania State University, 1972), 30 pp.Google Scholar
  33. [33]
    S. C. Schmidt, R. C. Amme, D. G. Murcray andA. Goldman,Ultraviolet absorption by nitric acid vapour, Nature238 (1972), 109.CrossRefGoogle Scholar
  34. [34]
    H. S. Johnston andR. Graham,Gas Phase Ultraviolet Absorption Spectrum of Nitric Acid Vapour, to be published.Google Scholar
  35. [35]
    G. Witt, Rocket Measurements, to be published.Google Scholar
  36. [36]
    K. Schütz, C. Junge, R. Beck andB. Albrecht,Studies of atmospheric N 2 O, J. Geophys. Res.75 (1970), 2230–2246.CrossRefGoogle Scholar
  37. [37]
    E. J. Williamson andJ. T. Houghton,Radiometric measurements of emission from stratospheric water vapour, Quart. J. Roy. Met. Soc.91 (1965), 330.CrossRefGoogle Scholar
  38. [38]
    D. H. Ehhalt andL. E. Heidt,The concentration of molecular H 2 and CH 4 in the stratosphere, Pure and Appl. Geophys.106–108 (1973), 1352.CrossRefGoogle Scholar
  39. [39]
    W. Seiler andC. E. Junge,Carbon monoxide in the atmosphere, J. Geophys. Res.75 (1970), 2217–2226.CrossRefGoogle Scholar
  40. [40]
    M. Ackerman,Ultraviolet Absorption Related to Mesospheric Processes, Mesospheric Models and Related Experiments, edited byG. Fiocco (Reidel Publishing Company, Dordrecht, Holland 1971), pp. 149–159.CrossRefGoogle Scholar
  41. [41]
    G. Kockarts,Penetration of Solar Radiation in the Schumann-Runge Bands of Molecular Oxygen Mesospheric Models and Related Experiments, edited byG. Fiocco (Reidel Publishing Company, Dordrecht, Holland 1971), pp. 160–176.Google Scholar
  42. [42]
    R. E. Huie, J. T. Herron andD. D. Davis,The rate of the reaction O+O 2 +M→O 3 +M, J. Phys. Chem.76 (1972), 2653–2658.CrossRefGoogle Scholar
  43. [43]
    I. T. N. Jones andR. P. Wayne,The photolysis of ozone by ultraviolet radiation: Effect of photolysis wavelength on primary step, Proc. Roy. Soc. London. A,319 (1970), 273–287.CrossRefGoogle Scholar
  44. [44]
    J. L. McCrumb andF. Kaufman,Kinetics of the O+O 3 reaction, to be published in J. Chem. Phys.Google Scholar
  45. [45]
    D. D. Davis, J. T. Herron andR. E. Huie,Absolute Rate constants for the reaction O( 3 P)+NO 2 →NO+O 2 over the temperature range 339–230 K, to be published in J. Chem. Phys.Google Scholar
  46. [46]
    H. S. Johnston, Laboratory Experiments, private communication, 1972.Google Scholar
  47. [47]
    G. Paraskevopoulos andR. J. Cvetanovic,Relative rate of reaction of O(1D) with H2O, Chem. Phys. Lett.9 (1971), 603–605.CrossRefGoogle Scholar
  48. [48]
    C. J. Hochanadel, J. A. Ghormley andP. J. Orgren,Absorption spectrum and reaction kinetics of the HO 2 radical in the gas phase, J. Chem. Phys.56 (1972), 4426–4432.CrossRefGoogle Scholar
  49. [49]
    R. Simonaitis andJ. Heicklen,The Reaction of OH with NO 2, to be published.Google Scholar
  50. [50]
    C. J. Fortin, D. R. Snelling andA. Tardif,The Ultraviolet Flash Photolysis of Ozone and the Reaction of O(1D) with H2O, to be published.Google Scholar
  51. [51]
    K. F. Langley andW. D. McGrath,The ultraviolet photolysis of ozone in the presence of water vapour, Planet. Space. Sci.19 (1971), 413.CrossRefGoogle Scholar
  52. [52]
    M. J. Kurylo,Absolute Rate Constants for the Reaction H+O 2+M→HO2+M Over the Temperature Range 203–404 K, to be published.Google Scholar
  53. [53]
    I. M. Campbell andB. A. Thrush,Effects of water, carbon dioxide and nitrous oxide on active nitrogen, Trans. Far. Soc.64 (1968), 1275–1286.CrossRefGoogle Scholar
  54. [54]
    J. Heicklen,Gas phase reactions of alkyl peroxy and alkoxy radicals, Adv. Chem. Ser.76 (1968), 23–39.CrossRefGoogle Scholar
  55. [55]
    J. G. Calvert, J. A. Kerr, K. L. Demerjian andR. D. McQuigg,Photolysis of formaldehyde as a hydrogen atom source in the lower atmosphere, Science175 (1972), 751–752.CrossRefGoogle Scholar
  56. [56]
    E. D. Morris, Jr. andH. Niki,Mass spectrometric study of the reaction of the hydroxyl radical with formaldehyde, J. Chem. Phys.55 (1971), 1991–1992.CrossRefGoogle Scholar
  57. [57]
    Chemical Kinetics Data Survey (National Bureau of Standard Reports 10692, 10828, 10867, U.S. Department of Commerce, 1972).Google Scholar
  58. [58]
    D. L. Baulch, D. D. Drysdale, A. C. Lloyd andD. G. Horne,High temperature reaction rate data, No. 1, May 1968; No. 2, Nov. 1968; No. 3, April 1969; No. 4, Dec. 1969; No. 5, July 1970 (Department of Physical Chemistry, The University, Leeds 2, England).Google Scholar
  59. [59]
    K. Schofield,An evaluation of kinetic rate data for reactions of neutrals of atmospheric interest, Planet. Space Sci.15 (1967), 643–670.CrossRefGoogle Scholar
  60. [60]
    F. Kaufman,Neutral reactions involving hydrogen and other minor constitutents, Con. J. Chem.47 (1969), 1917–1924.CrossRefGoogle Scholar
  61. [61]
    J. G. Calvert andJ. N. Pitts, Jr.,Photochemistry (John Wiley and Sons, Inc., New York 1967), p. 444.Google Scholar
  62. [62]
    W. B. DeMore andO. F. Raper,Reaction of O(1D) with methane, J. Chem. Phys.46 (1967), 2500–2505.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1973

Authors and Affiliations

  • Paul Crutzen
    • 1
  1. 1.Institute of MeteorologyUniversity of StockholmStockholm 19Sweden

Personalised recommendations