Fibrations and partial products in a 2-category
Article
- 160 Downloads
- 5 Citations
Abstract
We introduce a new intrinsic definition of fibrations in a 2-category, and show how it may be used (in conjunction with a suitable limit-colimit commutation condition) to define a 2-categorical version of the notion of partial product. We use these notions to show that partial products exist for all fibrations in the 2-category of (small) categories, and to identify the fibrations in the 2-category of toposes and geometric morphisms.
Mathematics Subject Classifications (1991)
Primary 18D05, 18D30 secondary 18A30, 18B25Key words
Fibration partial product 2-categoryPreview
Unable to display preview. Download preview PDF.
References
- 1.J. Bénabou, ‘Some remarks on free monoids in a topos’, inCategory Theory, Como 1990, Lecture Notes in Math. vol. 1488, Springer-Verlag, 1991, 20–29.Google Scholar
- 2.G. J. Bird, G. M. Kelly, A. J. Power, and R. H. Street, ‘Flexible limits for 2-categories’,J. Pure Appl. Alg. 61 (1989), 1–27.Google Scholar
- 3.A. Carboni and P. T. Johnstone, ‘Connected limits, familial representability and Artin glueing’, in preparation.Google Scholar
- 4.F. Conduché, ‘Au sujet de l'existence d'adjoints à droite aux foncteurs “image réciproque” dans la catégorie des catégories’,C. R. Acad. Sci. Paris 275 (1972), A891–894.Google Scholar
- 5.R. Dyckhoff, ‘Total reflections, partial products and hereditary factorisations’,Topology Appl. 17 (1984), 101–113.Google Scholar
- 6.R. Dyckhoff and W. Tholen, ‘Exponentiable morphisms, partial products and pullback complements’,J. Pure Appl. Alg. 49 (1987), 103–116.Google Scholar
- 7.J. W. Gray, ‘Fibred and cofibred categories’, inProceedings of the Conference on Categorical Algebra, La Jolla 1965, Springer-Verlag, 1966, 21–83.Google Scholar
- 8.J. W. Gray,Formal Category Theory: Adjointness for 2-Categories. Lecture Notes in Math. vol. 391, Springer-Verlag, 1974.Google Scholar
- 9.A. Grothendieck, ‘Catégories fibrées et descente’, Séminaire de Géométrie Algébrique de l'I.H.E.S., 1961.Google Scholar
- 10.P. T. Johnstone,Topos Theory, Academic Press, 1977.Google Scholar
- 11.P. T. Johnstone, ‘The Gleason cover of a topos, II’,J. Pure Appl. Alg. 22 (1981), 229–247.Google Scholar
- 12.P. T. Johnstone, ‘Partial products, bagdomains and hyperlocal toposes’, inApplications of Categories in Computer Science, L.M.S. Lecture Notes Series No. 177, Cambridge University Press, 1992, 315–339.Google Scholar
- 13.P. T. Johnstone, ‘Variations on the bagdomain theme’, in preparation.Google Scholar
- 14.P. T. Johnstone, ‘Fibrations and pro-arrow equipment’, in preparation.Google Scholar
- 15.P. T. Johnstone and A. Joyal, ‘Continuous categories and exponentiable toposes’,J. Pure Appl. Alg. 25 (1982), 255–296.Google Scholar
- 16.P. T. Johnstone and I. Moerdijk, ‘Local maps of toposes’,Proc. Lond. Math. Soc. (3)58 (1989), 281–305.Google Scholar
- 17.P. T. Johnstone and G. C. Wraith, ‘Algebraic theories in toposes’, inIndexed Categories and Their Applications, Lecture Notes in Math. vol. 661, Springer-Verlag, 1978, 141–242.Google Scholar
- 18.A. Joyal and R. Street, ‘Pullbacks equivalent to pseudopullbacks’, Macquarie Mathematics Report no. 92-092, 1992.Google Scholar
- 19.G. M. Kelly, ‘On clubs and doctrines’, inCategory Seminar, Sydney 1972/73, Lecture Notes in Math. vol. 420, Springer-Verlag, 1974, 181–256.Google Scholar
- 20.G. M. Kelly, ‘On clubs and data type constructors’, inApplications of Categories in Computer Science, L.M.S. Lecture Notes Series No. 177, Cambridge University Press, 1992, 163–190.Google Scholar
- 21.B. A. Pasynkov, ‘Partial topological products’,Trans. Moscow Math. Soc. 13 (1965), 153–272.Google Scholar
- 22.R. D. Rosebrugh and R. J. Wood, ‘Cofibrations in the bicategory of topoi’,J. Pure Appl. Alg. 32 (1984), 71–94.Google Scholar
- 23.R. D. Rosebrugh and R. J. Wood, ‘Cofibrations II: left exact right actions and composition of gamuts’,J. Pure Appl. Alg. 39 (1986), 283–300.Google Scholar
- 24.R. D. Rosebrugh and R. J. Wood, ‘Proarrows and cofibrations’,J. Pure Appl. Alg. 53 (1988), 271–296.Google Scholar
- 25.R. Street, ‘Fibrations and Yoneda's lemma in a 2-category’, inCategory Seminar, Sydney 1972/73, Lecture Notes in Math. vol. 420, Springer-Verlag, 1974, 104–133.Google Scholar
- 26.R. Street, ‘Fibrations in bicategories’,Cahiers Top. Géom. Diff. 21 (1980), 111–160.Google Scholar
- 27.R. Street, ‘Conspectus of variable categories’,J. Pure Appl. Alg. 21 (1981), 307–338.Google Scholar
- 28.S. J. Vickers, ‘Geometric theories and databases’, inApplications of Categories in Computer Science, L.M.S. Lecture Notes Series No. 177, Cambridge University Press, 1992, 288–314.Google Scholar
- 29.R. J. Wood, ‘Abstract proarrows I’,Cahiers Top. Géom. Diff. 23 (1982), 279–290.Google Scholar
- 30.G. C. Wraith, ‘Artin glueing’,J. Pure Appl. Alg. 4 (1974), 345–348.Google Scholar
Copyright information
© Kluwer Academic Publishers 1993