pure and applied geophysics

, Volume 139, Issue 3–4, pp 697–719 | Cite as

Mining-induced microseismicity: Monitoring and applications of imaging and source mechanism techniques

  • R. P. Young
  • S. C. Maxwell
  • T. I. Urbancic
  • B. Feignier


The study of microseismicity in mines provides an ideal method for remote volumetric sampling of rock masses. The nature and uniqueness of microseismic monitoring is outlined in the context of acquisition hardware and software requirements. Several topics are used to highlight the potential for novel applications of microseismicity and to outline areas where further study is required. These topics reflect some of the current interest areas in seismology, namelyb values and source parameters, fault-plane solutions, modes of failure and moment tensor inversion, imaging and seismicityvelocity correlations. These studies suggest potential correlations between zones of high seismic velocity, high microseismic activity and maximal stress drops, which can be interpreted spatially to be the locations of highly stressed ground with a potential for rock bursting. Fault-plane solutions are shown to be useful in determining the slip potential of various joint sets in a rock mass. Source parameter studies and moment tensor analysis clearly show the importance of non-shear components of failure, andb values for microseismicity appear to be magnitude-limited and related to spatial rather than temporal variations in effective stress levels.

Key words

Induced seismicity tomography b values source parameters moment tensor inversion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aki, K. (1987),Magnitude-frequency Relation for Small Earthquakes: A Clue to the Origin of f max of Large Earthquakes, J. Geophys. Res.92, 1349–1355.Google Scholar
  2. Barker, B. W., andMurphy, J. R. (1992),A Lithospheric Velocity Anomaly beneath the Shagan River Test Site. Part 1. Detection and Location with Network Magnitude Residuals, Bull. Seismol. Soc. Am.82, (2), 980–998.Google Scholar
  3. Cichowicz, A., Green, R. W. E., Brink, A. v. Z., Grobler, P., andMountfort, P. I. (1990),The space and time variation of microevents occurring in front of an active stope. InRockbursts and Seismicity in Mines (ed. Fairhurst, C.), 2nd Int. Symp. on Rockbursts and Seis. in Mines (University of Minnesota Minneapolis 1988) pp. 171–175.Google Scholar
  4. Feignier, B., andGrasso, J.-R. (1991),Relation between Seismic Source Parameters and Mechanical Properties of Rocks: A Case Study, Pure and Appl. Geophys.137 (3), 175–199.Google Scholar
  5. Feignier, B., andYoung, R. P. (1992),Moment Tensor Inversion of Induced Microseismic Events: Evidence of Non-shear Failures in the −44<M<−2 Moment Magnitude Range, Geoph. Res. Lett.19 (4), 1503–1506.Google Scholar
  6. Gibowicz, S. J., Young, R. P., Talebi, S., andRawlence, D. J. (1991),Source Parameters of Seismic Events at the Underground Research Laboratory in Manitoba, Canada: Scaling Relations for Events with Moment Magnitude Smaller than −2, Bull. Seismol. Soc. Am.81 (4), 1157–1182.Google Scholar
  7. Lomnitz-Adler, J. (1985),Asperity Models and Characteristic Earthquakes, Geophys. J. R. Astron. Soc.83, 435–450.Google Scholar
  8. Madariaga, R. (1976),Dynamics of an Expanding Circular Fault, Bull. Seismol. Soc. Am.66, 639–666.Google Scholar
  9. Maxwell, S. C., andYoung, R. P. (1992),3D Seismic Velocity Imaging Using Microseismic Monitoring Systems at Strathcona Mine and Mines Gaspe, Proc. 94th AGM, Canadian Institute of Mining.Google Scholar
  10. McGarr, A. (1984),Scaling of Ground Motion Parameters, State of Stress, and Focal Depth, J. Geophys. Res.89, 6969–6979.Google Scholar
  11. McGarr, A. (1992),An Implosive Component in the Seismic Moment Tensor of a Mining-induced Tremor, Geophys. Res. Lett.19 (15), 1579–1582.Google Scholar
  12. Michael, A. J., andEberhart-Phillips, D. (1991),Relations among Fault Behaviour, Subsurface Geology, and Three-dimensional Velocity Models, Science253, 651–654.Google Scholar
  13. Nuttli, O. N. (1973),Seismic Wave Attenuation and Magnitude Relations for Eastern North America, J. Geophys. Res.78, 876–885.Google Scholar
  14. Raleigh, C. B., Healy, J. H., andBredehoeft, J. D. (1972),Faulting and crustal stress at Rangely, Colorado. InFlow and Fracture of Rocks (eds. Heard, H. C. et al.) Monogr. Ser., Vol. 16, (AGU, Washington, DC 1972) pp. 275–284.Google Scholar
  15. Sbar, M. L. (1982),Delineation and Interpretation of Seismotectonic Domains in Western North America, J. Geophys. Res.87, 3919–3928.Google Scholar
  16. Spottiswoode, S. M., andMcGarr, A. (1975),Source Parameters of Tremors in a Deep-level Gold Mine, Bull. Seismol. Soc. Am.65, 93–112.Google Scholar
  17. Taylor, D. W. A., Snoke, J. A., Sacks, I. S., andTakanami, T. (1990),Nonlinear Frequency-Magnitude Relationships for the Hokkaido Corner, Japan, Bull. Seismol. Soc. Am.80, 340–353.Google Scholar
  18. Trifu, C.-I., andRadulian, M. (1991),The Frequency-Magnitude Distribution of Earthquakes in Vrancea: Relevance for a Discrete Model, J. Geophys. Res.96, 4301–4311.Google Scholar
  19. Urbancic, T. I. (1991),Source Studies of Mining-induced Microseismicity at Strathcona Mine, Sudbury, Canada: A Spatial and Temporal Analysis, Ph.D. Thesis, Queen's University, Kingston, Canada.Google Scholar
  20. Wyss, M. (1973),Towards a Physical Understanding of the Earthquake Frequency Distribution, Geophys. J. R. Astr. Soc.31, 341–359.Google Scholar
  21. Young, R. P., andMaxwell, S. C. (1992)Seismic Characterization of a Highly Stressed Rock Mass Using Tomographic Imaging and Induced Seismicity, J. Geophys. Res.97, 12361–12373.Google Scholar
  22. Young, R. P.,Correlations between Seismic Velocity and Induced Seismicity in Underground Mines (eds. Tillerson, J. R., and Wawersik, W. R.) (Balkema, Rotterdam 1992) Proc. 33rd US Rock Mechanics Symposium, Sante Fe, 1113–1122.Google Scholar

Copyright information

© Birkhäuser Verlag 1992

Authors and Affiliations

  • R. P. Young
    • 1
  • S. C. Maxwell
    • 1
  • T. I. Urbancic
    • 1
  • B. Feignier
    • 1
  1. 1.Engineering Seismology Laboratory, Department of Geological SciencesQueen's UniversityKingstonCanada

Personalised recommendations