pure and applied geophysics

, Volume 117, Issue 1–2, pp 34–50 | Cite as

Heat flow in the Basin and Range province and thermal effects of tectonic extension

  • Arthur H. Lachenbruch
General Geothermics


In regions of tectonic extension, vertical convective transport of heat in the lithosphere is inevitable. The resulting departure of lithosphere temperature and thickness from conduction-model estimates depends upon the mechanical mode of extension and upon how rapidly extension is (and has been) taking place. Present knowledge of these processes is insufficient to provide adequate constraints on thermal models. The high and variable regional heat flow and the intense local heat discharge at volcanic centers in the Basin and Range province of the United States could be accounted for by regional and local variations in extensional strain rate without invoking anomalous conductive heat flow from the asthenosphere. Anomalous surface heat flow typical of the province could be generated by distributed extension at average rates of about 1/2 to 1%/m.y., similar to rates estimated from structural evidence. To account for higher heat flow in subregions like the Battle mountain High, these rates would be increased by a factor of about 3, and locally at active bimodal volcanic centers, by an order of magnitude more.

Key words

Convective heat transfer Thermal models of lithosphere Extensional strain rate Reduced heat flow Basaltic magmatism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baksi, A. K. andWatkins, N. D. (1973),Volcanic production rates: Comparison of oceanic ridges, islands, and the Columbia Plateau basalts, Science180, 493–496.Google Scholar
  2. Bodvarsson, G. (1954),Terrestrial heat balance in Iceland, Timarit, 69–76.Google Scholar
  3. Chapman, D. S. andPollack, H. N. (1975),Global heat flow: A new look, Earth Planet. Sci. Lett.28, 23–32.Google Scholar
  4. Christiansen, R. L. andLipman, P. W. (1972),Cenozoic volcanism and plate-tectonic evolution of the western United States — Part II, Late Cenozoic, Royal Soc. London Philos. Trans., Ser. A,271, 249–284.Google Scholar
  5. Crough, S. T. andThompson, G. A. (1976),Thermal model of continental lithosphere, J. Geophys. Res.81, 4857–4862.Google Scholar
  6. Forsyth, D. W. andPress, F. (1971),Geophysical tests of petrological models of the spreading lithosphere, J. Geophys. Res.76, 7963–7979.Google Scholar
  7. Hamza, V. M. andVerma, R. K. (1969),The relationship of heat flow with age of basement rocks, Bull. Volcanol.33, 123–152.Google Scholar
  8. Lachenbruch, A. H. andSass, J. H. (1977),Heat flow in the United States and the thermal regime of the crust, inThe Earth's Crust (ed. J.G. Heacock) (Am. Geophys. Union Geophys. Mon. 20) 626–675.Google Scholar
  9. Lachenbruch, A. H. andSass, J. H.,Models of an extending lithosphere and heat flow in the Basin and Range province, inGeol. Soc. America Memoir 152 (Geol. Soc. America 1978) in press.Google Scholar
  10. Lachenbruch, A. H., Sass, J. H., Munroe, R. J. andMoses, T. H., Jr. (1976),Geothermal setting and simple heat conduction models for the Long Valley caldera, J. Geophys. Res.81, 769–784.Google Scholar
  11. McKenzie, D. P. (1967),Some remarks on heat flow and gravity anomalies, J. Geophys. Res.72, 6261–6273.Google Scholar
  12. Palmason, G. (1973),Kinematics and heat flow in a volcanic rift zone, with application to Iceland, Geophys. J. R. astr. Soc.33, 451–481.Google Scholar
  13. Polyak, B. G. andSmirnov, Ya. B. (1966),Heat flow on continents, Doklady Akad. Nauk SSSR,168, 26–29.Google Scholar
  14. Roy, R. F., Blackwell, D. D. andBirch, F. (1968),Heat generation of plutonic rocks and continental heat flow provinces, Earth Planet. Sci. Lett.5, 1–12.Google Scholar
  15. Sclater, J. G. andFrancheteau, J. (1970),The implications of terrestrial heat-flow observations on current tectonic and geochemical models of the crust and upper mantle of the earth, Geophys. J. R. astr. Soc.20, 493–509.Google Scholar
  16. Smith, R. L. andShaw, H. R.,Igneous-related geothermal systems, inAssessment of Geothermal Resources of the United States-1975 (ed. D. E. White and D. L. Williams) (U.S. Geol. Survey Circ. 726, 1975), pp. 58–83.Google Scholar
  17. Swanson, D. A., Wright, T. L. andHelz, R. T. (1975),Linear vent systems and estimated rates of magma production and eruption for the Yakima Basalt on the Columbia Plateau, Am. Jour. Sci.275, 877–905.Google Scholar
  18. Thompson, G. A. andBurke, D. B. (1974),Regional geophysics of the Basin and Range province, Annual Rev. Earth Planet. Sci.2, 213–238.Google Scholar
  19. Turcotte, D. L. andOxburgh, E. R. (1967),Finite-amplitude convective cells and continental drift, J. Fluid Mech.28, 29–42.Google Scholar
  20. Weaver, C. S. andHill, D. P. (1978/79),Earthquake swarms and local crustal spreading along major strike-slip faults in California, Pure appl. Geophys.117, 51–64.Google Scholar
  21. Weertman, J. (1971),Theory of water-filled crevasses in glaciers applied to vertical magma chambers beneath oceanic ridges, Jour. Geophys. Res.76, 1171–1183.Google Scholar
  22. Wyllie, P. J.,A discussion of water in the crust, inThe Structure and Physical Properties of the Earth's Crust (ed. J. G. Heacock) (Am Geophys. Union Geophys. Mon. 14, 1971) pp. 257–260.Google Scholar
  23. Yoder, H. S., Jr.,Generation of Basaltic Magma (Natl. Acad. Sciences, Washington, D.C. 1976), 265 pp.Google Scholar

Copyright information

© Birkhäuser Verlag 1978

Authors and Affiliations

  • Arthur H. Lachenbruch
    • 1
  1. 1.U.S. Geological SurveyMenlo ParkUSA

Personalised recommendations