Advertisement

European Journal of Nuclear Medicine

, Volume 24, Issue 7, pp 797–808 | Cite as

A clinical perspective of accelerated statistical reconstruction

  • Brian F. Hutton
  • H. Malcolm Hudson
  • Freek J. Beekman
Occasional Survey

Abstract

Although the potential benefits of maximum likelihood reconstruction have been recognised for many years, the technique has only recently found widespread popularity in clinical practice. Factors which have contributed to the wider acceptance include improved models for the emission process, better understanding of the properties of the algorithm and, not least, the practicality of application with the development of acceleration schemes and the improved speed of computers. The objective in this article is to present a framework for applying maximum likelihood reconstruction for a wide range of clinically based problems. The article draws particularly on the experience of the three authors in applying an acceleration scheme involving use of ordered subsets to a range of applications. The potential advantages of statistical reconstruction techniques include: (a) the ability to better model the emission and detection process, in order to make the reconstruction converge to a quantitative image, (b) the inclusion of a statistical noise model which results in better noise characteristics, and (c) the possibility to incorporate prior knowledge about the distribution being imaged. The great flexibility in adapting the reconstruction for a specific model results in these techniques having wide applicability to problems in clinical nuclear medicine.

Key words

Single-photon emission tomography Maximum likelihood reconstruction Fast image processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kuhl DE, Edwards RQ. Image separation radioisotope scanning,Radiology 1963; 80: 653–662.Google Scholar
  2. 2.
    Cormack AM. Representation of a function by its line integrals with some radiological applications.J Appl Phys 1963; 34:2722–2727.Google Scholar
  3. 3.
    Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography.IEEE Trans Med Imaging 1982; 1: 113–122.Google Scholar
  4. 4.
    Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography.J Comput Assist Tomogr 1984; 8: 306–316.PubMedGoogle Scholar
  5. 5.
    Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm.J R Stat Soc 1977; 39: 1–38.Google Scholar
  6. 6.
    Geman S, McClure DE. Statistical methods for tomography image reconstruction.Bull Inst Internat Stat 1987; 52: 5–21.Google Scholar
  7. 7.
    Hebert T, Leahy R. A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors.IEEE Trans Med Imaging 1989; 8: 194–202.Google Scholar
  8. 8.
    Levitan E, Herman GT. A maximum a-posteriori probability expectation maximization algorithm for image reconstruction in emission tomography.IEEE Trans Med Imaging 1987; 6: 185–192.Google Scholar
  9. 9.
    Green PJ. On use of the EM algorithm for penalized likelihood estimation.J R Star Soc 1990; Ser B 52: 443–452.Google Scholar
  10. 10.
    Green PJ. Bayesian reconstruction from emission tomography data using a modified EM algorithm.IEEE Trans Med Imaging 1990: 9: 84–93.Google Scholar
  11. 11.
    Lange K. Convergence of EM image reconstruction algorithms with Gibbs smoothing.IEEE Trans Med Imaging 1990; MI-9: 439–446.Google Scholar
  12. 12.
    Lange K, Fessler JA. Globally convergent algorithms for maximum a-posteriori transmission tomography.IEEE Trans Image Processing 1995; 4: 1430–1438.Google Scholar
  13. 13.
    Lalush DS, Tsui BMW. A generalized Gibb's prior for maximum a-posteriori reconstruction in SPECT.Phys Med Biol 1993; 38: 729–741.PubMedGoogle Scholar
  14. 14.
    Ardekani BA, Braun M, Hutton BF, Kanno I, Iida H. Minimum cross-entropy reconstruction of PET images using prior anatomical information.Phys Med Biol 1996, 41: 2497–2517.PubMedGoogle Scholar
  15. 15.
    Gindi G, Lee M, Rangarajan A, Zubal IG. Bayesian reconstruction of functional images using anatomical information as priors.IEEE Trans Med Imaging 1993; 12: 670–680.Google Scholar
  16. 16.
    Leahy R, Yan X. Incorporation of anatomical MR data for improved functional imaging with PET.Proc Information Processing in Medical Imaging 1991; 105–120.Google Scholar
  17. 17.
    JE, Johnson VA, Turkington TG, Jaszczak RJ, Floyd CE, Coleman RE. Bayesian reconstruction and use of anatomical a-priori information for emission tomography.IEEE Trans Med Imaging 1996; 15: 673–686.Google Scholar
  18. 18.
    Green PJ, Silverman BW. Nonparametric regression and generalized linear models. A roughness penalty approach.Monographs on statistics and applied probability, 58. London: Chapman & Hall, 1994.Google Scholar
  19. 19.
    Fessler JA. Penalized weighted least-squares image reconstruction for positron emission tomography.IEEE Trans Med Imaging 1994; 13: 290–301.Google Scholar
  20. 20.
    Hudson HM, Ma J, Green P. Fisher's method of scoring in statistical image reconstruction: comparison of Jacobi and Gauss-Seidel iterative schemes.Stat Methods Med Res 1994; 3: 41–61.PubMedGoogle Scholar
  21. 21.
    Byrne CL. Block-iterative methods for image reconstruction from projections.IEEE Trans Image Processing 1996; 5: 792–793.Google Scholar
  22. 22.
    Censor Y, Segman J. On block iterative entropy maximization.J Inform Optim Sci 1987; 8: 275–291.Google Scholar
  23. 23.
    Browne J, De Pierro AR. A row-action alternative to the EM algorithm for maximizing likelihoods in emission tomography.IEEE Trams Med Imaging 1996; 15: 687–699.Google Scholar
  24. 24.
    De Pierro AR. On the convergence of an EM-type algorithm for penalized likelihood estimation in emission tomography.IEEE Trans Med Imaging 1995; 14: 762–764.Google Scholar
  25. 25.
    Censor Y, Herman GT. On some optimization techniques in image reconstruction from projections.Appl Numer Math 1987; 3: 365–391.Google Scholar
  26. 26.
    King MA, Tsui BMW, Pan T-S, Glick SJ, Scares EJ. Attenuation compensation for cardiac single-photon emission computed tomographic imaging. Part 2. Attenuation compensation algorithms.J Nucl Cardiol 1996; 3: 55–63.PubMedGoogle Scholar
  27. 27.
    Snyder D, Miller M, Thomas L, Politte DG. Noise and edge artifacts in maximum likelihood reconstructions for emission tomography.IEEE Trans Med Imaging 1987; 6: 228–238.Google Scholar
  28. 28.
    Liew SC, Hasegawa BH, Brown JK, Lang TF. Noise propagation in SPECT images reconstructed using an iterative maximum likelihood algorithm.Phys Med Biol 1993; 38: 1713–1726.PubMedGoogle Scholar
  29. 29.
    Barrett HH, Wilson DW, Tsui BMW. Noise properties of the EM algorithm.J Nucl Med 1994; 39: 833–846.Google Scholar
  30. 30.
    Hebert TJ. Statistical stopping criteria for iterative maximum likelihood reconstruction of emission images.Phys Med Biol 1990; 35: 1221–1232.Google Scholar
  31. 31.
    Johnson VE. A note on stopping rules in EM-ML reconstruction of ECT images.IEEE Trans Med Imaging 1994; 13: 569–571.Google Scholar
  32. 32.
    Llacer J, Veklerov E. Feasible images and practical stopping rules for iterative algorithms in emission tomography.IEEE Trans Med Imaging 1989; 8: 186–193.Google Scholar
  33. 33.
    Llacer J, Veklerov E, Nunez J. Statistical analysis of maximum likelihood estimator images of human FDG PET studies.IEEE Trans Med Imaging 1993; 12: 215–231.Google Scholar
  34. 34.
    Beekman FJ, Viergever MA. Evaluation of fully 3D iterative scatter compensation and post-reconstruction filtering in SPECT. In: Grangeat P, Amans J-L, eds.Three-dimensional image reconstruction in radiology and nuclear medicine. 1996: 163–175. Kluwer Academic Publishers, Dordrecht Boston London.Google Scholar
  35. 35.
    Beekman FJ, Slijpen ETP, Niessen WJ. Supervised diffusion parameter selection for filtering SPECT brain images. In: Ter Haar Romeney BM, eds.Lecture notes in computer science. Heidelberg Berlin New York: Springer; 1997, in press.Google Scholar
  36. 36.
    Chornoboy ES, Chen CJ, Miller MI, Miller TR, Snyder DL. An evaluation of maximum likelihood reconstruction for SPECT.IEEE Trans Med Imaging 1990; 9: 99–110.Google Scholar
  37. 37.
    Meikle SR, Hutton BF, Bailey DL, Hooper PK, Fulham MJ. Accelerated EM reconstruction in total-body PET: potential for improving tumour detectability.Phys Med Biol 1994; 39: 1689–1704.PubMedGoogle Scholar
  38. 38.
    Llacer J, Veklerov E, Baxter LR, et al. Results of a clinical ROC study comparing filtered back projection and maximum likelihood estimator images in FDG PET studies.J Nucl Med 1993; 34: 1198–1203.PubMedGoogle Scholar
  39. 39.
    Holte S, Schmidlin P, Linden A, Rosenquist G, Eriksson L. Iterative image reconstruction for positron emission tomography: a study of convergence and quantitation problems.IEEE Trans Nucl Sci 1990; 37: 629–635.Google Scholar
  40. 40.
    Hebert T, Leahy R, Singh M. Three-dimensional maximum-likelihood reconstruction for an electronically collimated single-photon emission imaging system.J Opt Soc Am A 1990; 1305–1313.Google Scholar
  41. 41.
    Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data.IEEE Trans Med Imaging 1994; 13: 601–609.Google Scholar
  42. 42.
    Zeng GL, Gullberg GT. Frequency domain implementation of the three-dimensional geometric point source correction in SPECT imaging.IEEE Trans Nucl Sci 1993; 39: 1444–1453.Google Scholar
  43. 43.
    Zeng GL, Gullberg GT. Valid backprojection matrices which are not the transpose of the projection matrix [abstract].J Nucl Med 1996; 37: 206p.Google Scholar
  44. 44.
    Kamphuis C, Beekman FJ, Viergeve MA, van Rijk PP. Accelerated fully 3D SPECT reconstruction using dual matrix ordered subsets [abstract].J Nucl Med 1996; 37: 62p.Google Scholar
  45. 45.
    Hudson HM, Hutton BF, Larkin R. Investigation of multiple energy reconstruction in SPECT using MLEM [abstract].J Nucl Med 1996; 37: 171p.Google Scholar
  46. 46.
    Pretorius PH, King MA, Pan T-S, Hutton BE Attenuation correction strategies for multi-energy photon emitters using SPECT. Conf record of 1996 IEEE Nucl Sci Symp, Anaheim, IEEE Trans Nucl Sci 1997; 1522–1526.Google Scholar
  47. 47.
    Manglos SH, Gagne GM, Thomas FD, Narayanaswamy R. Transmission maximum-likelihood reconstruction with ordered subsets for cone beam CT.Phys Med Biol 1995; 40: 1225–1241.PubMedGoogle Scholar
  48. 48.
    Li J, Jaszczak RJ, Greer KL, Coleman RE. Implementation of an accelerated iterative algorithm for cone-beam SPECT.Phys Med Biol 1994; 39: 643–653.PubMedGoogle Scholar
  49. 49.
    Meikle SR, Bailey DL, Hooper PK, et al. Simultaneous emission and transmission measurements for attenuation correction in whole-body PET.J Nucl Med 1995; 36: 1680–1688.PubMedGoogle Scholar
  50. 50.
    Glick SJ, Hawkins WG, King MA, Penney BC, Scares EJ, Byrne CL. The effect of intrinsic attenuation correction methods on the stationarity of the 3-D modulation transfer function of SPECT.Med Phys 1992; 19: 1105–1112.PubMedGoogle Scholar
  51. 51.
    Tsui BMW, Zhao GK, Gregoriou GK, et al. Quantitative cardiac SPELT reconstruction with reduced image degradation due to patient anatomy.IEEE Trans Nucl Sci 1994; 41: 2838–2848.Google Scholar
  52. 52.
    Hutton BF, Meikle SR, Osiecki A. Contrast in 180 versus 360 degree attenuation and scatter corrected myocardial SPECT [abstract].J Nucl Med 1995; 36: 51p.Google Scholar
  53. 53.
    King MA, Xia W, deVries DJ, et al. A Monte Carlo investigation of artifacts caused by liver uptake in single-photon emission computed tomography perfusion imaging with technetium-99m labeled agents.J Nucl Cardiol 1996; 3: 18–29.PubMedGoogle Scholar
  54. 54.
    Maniawski PJ, Miller SD, Morgan HT. Combined attenuation and scatter correction significantly reduces the effect of extracardiac activity on TI-201 myocardial perfusion SPECT [abstract].J Nucl Med 1996; 37: 214p.Google Scholar
  55. 55.
    Hutton BF, Osiecki A, Meikle SR. Transmission-based scatter correction of 180 degrees myocardial single-photon emission tomographic studies.Eur J Nucl Med 1996; 23: 1300–1308.PubMedGoogle Scholar
  56. 56.
    Frey EC, Tsui BMW. Modeling the scatter response function in inhomogeneous scattering media for SPECT.IEEE Trans Nucl Sci 1994; 41: 1585–1593.CrossRefGoogle Scholar
  57. 57.
    Beckman FJ, Kamphuis C, Viergever MA. Improved SPECT quantitation using fully three-dimensional iterative spatially variant scatter response compensation.IEEE Trans Med Imaging 1996; 15: 491–499.CrossRefGoogle Scholar
  58. 58.
    Bowsher JE, Floyd C. Treatment of Compton scattering in maximum likelihood, expectation-maximization reconstruction of SPECT images.J Nucl Med 1991; 32: 1285–1291.PubMedGoogle Scholar
  59. 59.
    Beekman FJ, Viergever MA. Fast SPECT simulation including object shape dependent scatter.IEEE Trans Med Imaging 1995; 14: 271–282.CrossRefGoogle Scholar
  60. 60.
    Fulton RR, Hutton BF, Braun M, Hooper PK, Eberl S, Meikle SR. Evaluation of a 3D OS-EM reconstruction algorithm for correction of patient motion in SPECT. In: Grangeat P, Aman J-L, eds. Three-dimensional image reconstruction in radiology and nuclear medicine. 1996: 197–208. Kluwer Academic Publishers, Dordrecht Boston London.Google Scholar
  61. 61.
    Green MV, Stein S, Yan T, Kertzman C. Patterns of head movement in normal subjects during simulated brain imaging [abstract].J Nucl Med 1991; 32: 1064.Google Scholar
  62. 62.
    Fulton RR, Hutton BF, Braun M, Ardekani B, Larkin R. Use of 3D reconstruction to correct for patient motion in SPECT.Phys Med Biol 1994; 39: 563–574.PubMedGoogle Scholar
  63. 63.
    Fulton RR, Hutton BF, Braun M, Ardekani B. Correction of gross patient motion artifacts in positron emission tomography.Proc SPIE, Math Methods Med Imaging II 1993; 2035: 166–170.Google Scholar
  64. 64.
    Tan K, Hutton BF, Feng D. A new approach for parameter estimation in SPECT dynamics using a rotating camera [abstract].Eur J Nucl Med 1994; 21: s10.Google Scholar
  65. 65.
    Celler A, Barney JS, Lyster D. Dynamic SPECT for assessment of myocardial viability [abstract].Eur J Nucl Med 1994; 21: s65.Google Scholar
  66. 66.
    Smith AM, Gullberg GT, Christian PE, Datz FL. Kinetic modeling of teboroxime using dynamic SPECT imaging of a canine model.J Nucl Med 1994; 35: 484–495.PubMedGoogle Scholar
  67. 67.
    O'Sullivan F. Imaging radiotracer model parameters in PET: a mixture analysis approach.IEEE Trans Med Imaging 1993; 12:399–412.CrossRefGoogle Scholar
  68. 68.
    Carson RE, Lange K. The EM parameric image reconstruction algorithm.J Am Stat Assoc 1985; 80: 20–22.Google Scholar
  69. 69.
    Zubal IG, Harrell CR, Smith EO, Rattner Z, Gindi G, Hoffer PB. Computerized three-dimensional segmented human anatomy.Med Phys 1994; 21: 299–302.CrossRefPubMedGoogle Scholar
  70. 70.
    Meikle SR, Matthews J, Cunningham VJ, et al. Spectral analysis of PET projection data. Conf record of 1996 IEEE Nucl Sci Symp, Anaheim, IEEE Trans Nucl Sci 1997; 1888–1892.Google Scholar
  71. 71.
    Hudson HM, Walsh C. Density deconvolution using spectral mixture models.Proc Computational Statistics and Data Analysis, IASC Second World Congress, Pasadena 1997.Google Scholar
  72. 72.
    Cunningham VJ, Jones T. Spectral analysis of dynamics PET studies.J Cereb Blood Flow Metab 1993; 13: 15–23.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Brian F. Hutton
    • 1
  • H. Malcolm Hudson
    • 2
  • Freek J. Beekman
    • 3
  1. 1.Department of Medical Physics and Department of Nuclear Medicine and UltrasoundWestmead HospitalSydneyAustralia
  2. 2.Department of StatisticsMacquarie UniversitySydneyAustralia
  3. 3.Department of Nuclear Medicine, Image Science InstituteUniversity Hospital UtrechtThe Netherlands

Personalised recommendations