pure and applied geophysics

, Volume 145, Issue 3–4, pp 677–700 | Cite as

Analysis of induced seismicity for stress field determination and pore pressure mapping

  • F. H. Cornet
  • Yin Jianmin


The focal mechanisms of some one hundred microseismic events induced by various water injections have been determined. Within the same depth interval, numerous stress measurements have been conducted with the HTPF method. When inverted simultaneously, the HTPF data and the focal plane solutions help determine the complete stress field in a fairly large volume of rock (about 15×106 m3). These results demonstrate that hydraulically conductive fault zones are associated with local stress heterogeneities. Some of these stress heterogeneities correspond to local stress concentrations with principal stress magnitudes much larger than those of the regional stress field. They preclude the determination of the regional stress field from the sole inversion of focal mechanisms. In addition to determining the regional stress field, the integrated inversion of focal mechanisms and HTPF data help identify the fault plane for each for each of the focal mechanisms. These slip motions have been demonstrated to be consistent with Terzaghi's effective stress principle and a Coulomb friction law with a friction coefficient ranging from 0.65 to 0.9. This has been used for mapping the pore pressure in the rock mass. This mapping shows that induced seismicity does not outline zones of high flow rate but only zones of high pore pressure. For one fault zone where no significant flow has been observed, the local pore pressure has been found to be larger than the regional minimum principal stress but no hydraulic fracturing has been detected there.

Key words

Induced seismicity stress determination stress heterogeneity fluid flow fault morphology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bott, B. (1959),The Mechanics of Oblique Slip Faulting, Geol. Mag.96 (2), 109–117.Google Scholar
  2. Bruel, D., andCornet F. H.,Force fluid through fractured reservoirs modelling. InFractured and Jointed Rock Masses (eds. N. G. W. Cook and L. Myer) (Lawrence Berkeley Lab Report LBL-32379, 3, 1992) pp. 519–526.Google Scholar
  3. Cochard, A., andMadariaga, R. (1994),Dynamic Faulting under Rate-dependent Friction, Pure and Appl. Geophys142 (3/4), 419–445.Google Scholar
  4. Cornet, F. H.,Experimental investigation on forced fluid flow through a granite rock mass. InFourth European Geothermal Update (eds. K. Louwrier, E. Staroste, and J. Garnish) (Kluwer Academic Pub. Dordrecht, Holland 1989) pp. 189–204.Google Scholar
  5. Cornet, F. H.,In situ stress heterogeneity identification with the HTPF tool.In Rock Mechanics, Proc. 33 rd US Symposium on Rock Mechanics (eds. Tillerson and Wawersik) (Balkema, Rotterdam 1992) pp. 39–48.Google Scholar
  6. Cornet, F. H., Hosanski, J. M., Bernaudat, F., andLedoux, E.,Shallow depth experimentation on the concept of energy extraction from deep hot dry rocks. InHydraulic Fracturing and Geothermal Energy (eds. S. Nemat-Nasser, H. Abe, and S. Hirakawa) (Martinus Nijhoff, The Hague 1982) pp. 385–403.Google Scholar
  7. Cornet, F. H., andJulien, Ph. (1989),Stress Determination from Hydraulic Test Data and Focal Mechanisms of Induced Seismicity, Int. J. Rock Mechanics Min. Sci and Geomech. Abs26 (3/4), 235–248.Google Scholar
  8. Cornet, F. H., Yin J., andMartel L.,Stress heterogeneity and flow path in a granite rock mass. InFractured and Jointed Rock Masses (eds. N. G. W. Cook, and L. Myer) (Lawrence Berkeley Lab. Report LBL-32379, vol. 1, 1992) pp. 80–87.Google Scholar
  9. Cornet, F. H., andScotti, O. (1993),Analysis of Induced Seismicity for Fault Zone Identification, Int J. Rock Mech. Min. Sci. and Geomech. Abs.30 (7), 789–795.Google Scholar
  10. Desroches, J., andCornet, F. H.,Channelling stiffness effects on fluid percolation in jointed rocks. InRock Joints (eds. N. Barton and O. Stephanson) (Balkema, Rotterdam 1990) pp. 527–534.Google Scholar
  11. Fehler, M. C. (1989).Stress Control of Seismicity Patterns Observed during Hydraulic Fracturing Experiments at the Fenton Hill Hot Dry Rock Geothermal Energy Site, New Mexico, Int. J. Rock Mech. Min. Sci. and Geomech Abs.26, (3/4) pp. 211–219.Google Scholar
  12. Gephart, J. W., andForsyth, D. W. (1984),An Improved Method for Determining the Regional Stress Tensor Using Earthquake Focal Mechanism Data: Application to San Fernando Earthquake Sequence, J. Geophys. Res.89, (B11), 9305–9320.Google Scholar
  13. Herero, A., andBernard, P. (1994),A Kinematic Self-similar Rupture Process for Earthquakes, Bull. Seismol Soc. Am.84 (4), pp. 1216–1228.Google Scholar
  14. House, L. (1987),Locating Microearthquakes Induced by Hydraulic Fracturing in Crystalline Rock, Geophys. Res. Lett.14, 919–921.Google Scholar
  15. Julien, Ph., andCornet, F. H. (1987),Stress Determination from Aftershocks of the Campania-Lucania Earthquake of November 23, 1980, Ann. Geophys.5B (3), pp. 289–300.Google Scholar
  16. McGarr, A. (1980),Some Constraint on Levels of Shear Stress in the Crust from Observations and Theory, J. Geophys. Res.85 (B11), pp. 6231–6238.Google Scholar
  17. Mosnier, J., andCornet, F. H.,Apparatus to provide an image of the wall of a borehole during a hydraulic fracturing experiment. InFouth European Geothermal Update (eds. K. Louwrier, E. Staroste, and J. Garnish) (Kluwer Academic Pub., Dordrecht 1989) pp. 205–212.Google Scholar
  18. Niitsuma, H., Nakatsuka, K., Takahashi, H., Abe, M., Chubachi, N., Yokoyama, H., andSato, R.,In situ AE measurements of hydraulic fracturing at geothermal fields. InHydraulic Fracturing and Geothermal Energy (eds. S. Nemat-Nasser, H. Abe, and S. Hirakawa) (Martinus Niijhoff, The Hague 1982) pp. 227–241.Google Scholar
  19. Pearson, C. (1981),The Relationship between Microseismicity and High Pore Pressure during Hydraulic Stimulation Experiments in Low Permeability Granite Rocks, J. Geophys. Res.86, 7855–7864.Google Scholar
  20. Pine, R. J., andBatchelor, A. S. (1984),Downward Migration of Shearing in Jointed Rock during Hydraulic Fracturing, Int. J. Rock Mechanisc Min. Sci. and Geomech. Abs.21, 249–263.Google Scholar
  21. Rice, J. (1993),Spatio-temporal Complexity of Slip on a Fault, J. Geophys. Res.98 (B6), 9885–9907.Google Scholar
  22. Riveira, L., andCisternas, A. (1990),Stress Tensor and Fault Plane Solutions for a Population of Earthquakes, Bull. Seismol. Soc. Am.80 (3), 600–614.Google Scholar
  23. Robinson, L. H., andHolland, W. E.,Some Interpretation of pore fluid effects in rock failure. InRock Mechanics—Theory and Practice, Proc. 11th Symp. on Rock Mech. (ed. W. H. Somerton) (Soc. Min. Eng., Am. Ins. Min. Met. Pet. Eng., New York 1970) pp. 585–597.Google Scholar
  24. Scotti, O., andCornet, F. H. (1994a),In situ Evidence for Fluid Induced Aseismic Slip Events Along Fault Zones, Int. J. Rock Mech. Min. Sci. and Geomech. Abs.31 (4), 347–358.Google Scholar
  25. Scotti, O., andCornet, F. H. (1994b),In situ Stress Fields and Focal Mechanism Solutions in Central France, Geophys. Res. Lett.21 (22), 2345–2348.Google Scholar
  26. Talebi, S., andCornet, F. H. (1987),Analysis of the Microseismicity Induced by a Fluid Injection in a Granite Rock Mass, Geophys. Res. Letts.14 (3), 227–230.Google Scholar
  27. Vasseur, G., Etchecopar, A., andPhilip, H. (1983),Stress StateInferred from Multiple Focal Mechanisms, Ann. Geophys.1, 291–297.Google Scholar
  28. Wallace, R. E. (1951),Geometry of Shearing Stress and Relation to Faulting, J. Geology59, 118–130.Google Scholar
  29. Yin, J.,Détermination du Champ de Contrainte Régional à Partir de Mesures Hydrauliques et de Mécanismes au Foyer de Microséismes Induits, Thèse de Doctorat de l'Univ. Paris VII et de l'Inst. Phys. Globe de Paris 1994.Google Scholar
  30. Yin, J., andCornet, F. H. (1994),Integrated Stress Determination by Joint Inversion of Hydraulic Tests and Focal Mechanisms, Geophys. Res. Lett. 29 (24) 2645–2648.Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • F. H. Cornet
    • 1
  • Yin Jianmin
    • 1
  1. 1.Département de SismologieInstitut de Physique du Globe de ParisParis cedex 05France

Personalised recommendations