Advertisement

pure and applied geophysics

, Volume 125, Issue 4, pp 499–577 | Cite as

Coda waves: A review

  • M. Herraiz
  • A. F. Espinosa
Article

Abstract

The analysis and interpretation of coda waves have received increasing attention since the early seventies. In the past few years interest in this subject has spread worldwide, and the study of high-frequency seismic coda waves has become a very important seismological topic. As a conclusion of the studies accomplished in this time, coda waves are considered the result of scattering processes caused by heterogeneities acting on seismic waves.P andS waves play a particularly important role in this interaction. The process introduces an attenuation which, added to the intrinsic absorption, gives the observed apparent attenuation. Therefore, coda waves constitute a thumbprint left by the heterogeneities on the seismograms. Coda waves offer decisive information about the mechanism of how scattering and attenuation take place. This review describes coda waves in detail, and summarizes the work done in this subject to 1986. The relation between coda waves and attenuation in the context of research on seismic scattering problems is stressed. Particular attention has been given to the application of coda waves to estimate source and medium parameters. The state-of-the-art of the temporal variations of coda wave shape, and the possible use of these variations as an earthquake precursor also are presented. Care has been taken to introduce the statistical models used to deal with the heterogeneities responsible for scattering.

Key words

High frequency seismic waves coda waves attenuation scattering heterogeneity absorption inhomogeneity coda quality factor Lg quality factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akamatsu, J. (1980),Attenuation property of coda parts of seismic waves from local earthquakes. Bull. Disas. Prev. Res. Inst., Kyoto Univ.30, 1–16.Google Scholar
  2. Aki, K. (1956),Correlogram analyses of seismograms by means of a simple automatic computer, J. Phys. Earth4, 71–79.Google Scholar
  3. Aki, K. (1969),Analysis of the seismic coda of local earthquakes as scattered waves. J. Geophys. Res.74, 615–631.Google Scholar
  4. Aki, K. (1973),Scattering of P waves under the Montana LASA, J. Geophys. Res.78, 1334–1346.Google Scholar
  5. Aki, K. (1977),Three-dimensional seismic velocity anomalies in the lithosphere, method and summary of results, J. Geophys.43, 235–242.Google Scholar
  6. Aki, K. (1980a),Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz. Phys. Earth Planet. Interiors21, 50–60.Google Scholar
  7. Aki, K. (1980b),Scattering and attenuation of shear waves in the lithosphere. J. Geophys. Res.85, 6496–6504.Google Scholar
  8. Aki, K. (1980c),Physical basis for the duration magnitude and recommended practice for coda magnitude determination. Proc. of the 17th Assembly of the ESC, Budapest.Google Scholar
  9. Aki, K. (1981a),Attenuation and scattering of short-period seismic waves in the lithosphere, inIdentification of Seismic Sources-Earthquakes or Underground Expositions (E. S. Husebye and S. Mykkelveit, editors) (D. Reidel Publishing Co., Dordrecht, The Netherlands, 1981) pp. 515–541.Google Scholar
  10. Aki, K. (1981b),Source and scattering effects on the spectra of small local arthquakes. Bull. Seism. Soc. Am.71, 1687–1700.Google Scholar
  11. Aki, K. (1981c),3-D inhomogeneities in the upper mantle. Tectonophysics75, 31–40.Google Scholar
  12. Aki, K. (1982),Scattering and attenuation, Bull. Seism. Soc. Am.72, S319-S330.Google Scholar
  13. Aki, K. (1984),Short-period seismology, J. Comput. Phys.54, 3–17.Google Scholar
  14. Aki, K. (1985),Theory of earthquake prediction with special reference to monitoring of the quality factor of the lithosphere by the coda method. Earthq. Predict. Res.3, 219–230.Google Scholar
  15. Aki, K., Tsujiura, M., Hori, M. andGoto, K. (1958),Spectral study of near earthquake waves. Bull. Earthquake Res. Inst., Tokyo Univ.36, 71–98.Google Scholar
  16. Aki, K. andTsujiura, M. (1959),Correlation study of near earthquake waves. Bull. Earthquake Res. Inst., Tokyo Univ.37, 207–232.Google Scholar
  17. Aki, K. andChouet, B. (1975),Origin of coda waves: source, attenuation and scattering effects, J. Geophys. Res.80, 3322–3342.Google Scholar
  18. Aki, K., Christoffersson, A. andHusebye, E. S. (1976),Three-dimensional seismic structure of the lithosphere under Montana LASA. Bull. Seism. Soc. Am.66, 501–526.Google Scholar
  19. Aki, K., Christoffersson, A. andHusebye, E. S. (1977),Determination of the three-dimensional seismic structure of the lithosphere, J. Geophys. Res.82, 277–296.Google Scholar
  20. Aki, K. andRichards, P. (1980),Quantitative Seismology, I and II (W. H. Freeman and Co., San Francisco).Google Scholar
  21. Anderson, D. L. andHart, R. S. (1978),Attenuation models of the earth. Phys. Earth Planet. Interiors16, 289–296.Google Scholar
  22. Asada, T. andTakano, K. (1963),Attenuation of short-period P waves in the mantle, J. Phys. Earth11, 25–34.Google Scholar
  23. Bache, T. C., Marshall, P. D. andBache, L. B. (1985),Q for teleseismic P waves from central Asia. J. Geophys. Res.90, 3575–3587.Google Scholar
  24. Bakun, W. H. (1984),Magnitudes and moments of duration. Bull. Seism. Soc. Am.74, 2335–2356.Google Scholar
  25. Bakun, W. H., Bufe, C. G. andStewart, R. M. (1976),Body wave spectra of central California earth-quakes. Bull. Seism. Soc. Am.66, 363–384.Google Scholar
  26. Bakun, W. H. andLindh, A. G. (1977),Local magnitude, seismic moments and coda durations for earth-quakes near Oroville, Califfornia. Bull. Seism. Soc. Am.69, 343–355.Google Scholar
  27. Banick, N. C., Lerche, I. andShuey, R. T. (1986a),Stratigraphic filtering, 1. Derivation of the O'Doherty-Anstey formula. Geophysics, in press.Google Scholar
  28. Banick, N. C., Lerche, I., Resnick, J. andShuey, R. T. (1986b),Stratigraphic filtering, 2, Model Spectra. Geophysics, in press.Google Scholar
  29. Bard, P. Y. andGariel, J. C. (1986),The seismic response of two-dimensional sedimentary deposits with large vertical velocity gradients. Bull. Seism. Soc. Am.76, 343–366.Google Scholar
  30. Barley, B. J., Hudson, J. A. andDouglas, A. (1982),S to P scattering at the 650 km discontinuity. Geophys. J. R. Astr. Soc.69, 159–172.Google Scholar
  31. Basham, P. W. andEllis, R. M. (1969),The composition of P codas using magnetic tape seismograms. Bull. Seism. Soc. Am59, 473–486.Google Scholar
  32. Batchelor, G. K. (1953),The Theory of Homogeneous Turbulence (Cambridge University Press).Google Scholar
  33. Båth, M. (1973),Introduction to Seismology (Birkhäuser Verlag, Basel).Google Scholar
  34. Baumgardt, D. R. (1985),Comparative analysis of teleseismic P coda and L g waves from underground nuclear explosions in Eurasia. Bull. Seism. Am.75, 1413–1423.Google Scholar
  35. Beaudet, P. R. (1970),Elastic wave propagation in heterogeneous media. Bull. Seism. Soc. Am.60, 769–784.Google Scholar
  36. Berckhemer, H. (1970),A possible scattering mechanism for lunar seismic waves. J. Geophys. Res36, 523–529.Google Scholar
  37. Berteussen, K. A., Christoffersson, A., Husebye, E. S. andDahle, A. (1975),Wave scattering theory in analyses of P wave anomalies at NORSAR and LASA. Geophys. J. R. Astr. Soc.42, 403–417.Google Scholar
  38. Birch, F. (1961),The velocity of compressional waves in rocks to 10 kb, part 2. J. Geophys. Res.66, 2199–2226.Google Scholar
  39. Biswas, N. N. andAki, K. (1984), Characteristics of coda waves: central and southcentral Alaska. Bull. Seism. Soc. Am.74, 493–507.Google Scholar
  40. Bisztricsany, E. A. (1958), A new method for the determination of the magnitude of earthquakes. Geofiz. Koszl.7, 2.Google Scholar
  41. Bollinger, G. A. (1979),Attenuation of the Lg phase and the determination of mb in the southeasten United States. Bull. Seism. Soc. Am.69, 45–63.Google Scholar
  42. Born, M. andWolf, E. (1965),Principles of Optics, 3rd edn. (Pergamon Press, Oxford).Google Scholar
  43. Bourret, R. C. (1962a),Stochastically perturbated fields with application to wave propagation in random media. Nuovo Cimento26, 1–31.Google Scholar
  44. Bourret, R. C. (1962b),Propagation of randomly perturbated fields. Canad. J. Phys.40, 782–790.Google Scholar
  45. Capon, J. (1974),Characterization of crust and upper mantle structure under LASA as a random medium. Bull. Seism. Am.64, 235–266.Google Scholar
  46. Capon, J. andBerteussen, K. A. (1973),A random medium analysis of crust and upper mantle structure under NORSAR, Semiannual Technical Summary, Massachusetts Institute of Technology, Cambridge, Massachusetts.Google Scholar
  47. Castellano, M., Del Pezzo, E., de Natala, G. andZollo, A. (1986),Seismic coda and turbidity coefficient at Campi Flegrei Volcanic area: preliminary results. submitted to Bull. Volc.Google Scholar
  48. Chandrasekhar, S. (1960),Radiative Transfer (Dover Publications, New York) (revised version of the work first published in 1950).Google Scholar
  49. Chaplin, M. P., Taylor, S. R. andToksöz M. N. (1980),A coda-length magnitude scale for New England. Earthquake Notes51, 15–22.Google Scholar
  50. Chávez, D. E. andPriestley, K. K. (1986),Measurement of frequency dependent Lg attenuation in the Great Basin. Geophys. Res. Lett.13, 551–554.Google Scholar
  51. Chen, P., Nuttli, O., Ye, W. andQin, J. (1984),Estimates of short-period Q values and seismic moments from coda waves for earthquakes of the Beijing and Yu-Nan regions of China. Bull. Sesim. Soc. Am.74, 1189–1207.Google Scholar
  52. Chernov, L. A. (1960),Wave Propagation in a Random Medium (McGraw-Hill, New York).Google Scholar
  53. Chouet, B. (1976),Source, scattering, and attenuation effects on high frequency seismic waves. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts.Google Scholar
  54. Chouet, B. (1979),Temporal variation in the attenuation of earthquake coda near Stone Canyon, California. Geophys. Res. Lett.6, 143–146.Google Scholar
  55. Chouet, B., Aki, K. andTsujiura, M. (1978),Regional variations of the scaling law of earthquake source spectra. Bull. Seism. Soc. Am.68, 49–79.Google Scholar
  56. Cleary, J. R. andHaddon, R. A. W. (1972),Seismic wave scattering near the core-mantle boundary: A new interpratation of precursors to PKIKP. Nature,240, 549–550.Google Scholar
  57. Cleary, J. R., King, D. W. andHaddon, R. A. W. (1976),Seismic wave scattering in the earth's crust and upper mantle. Geophys. J.43, 861–872.Google Scholar
  58. Console, R. andRovelli, A. (1981),Attenuation parameters for Friuli region from strong motion accelerograms. Bull. Seism. Soc Am.71, 1981–1991.Google Scholar
  59. Crosson, R. S. (1972),Small earthquakes, structure and tectonics of the Puget Sound region. Bull. Seism. Soc. Am.62, 1133–1177.Google Scholar
  60. Crow, S. C. (1969),Distortion of sonic bangs by atmospheric turbulence. J. Fluid Mech.37, 529–563.Google Scholar
  61. Dainty, A. M. (1981),A scattering model to explain seismic Q observations in the lithosphere between 1 and 30 Hz. Geophys. Res. Lett.8, 1126–1128.Google Scholar
  62. Dainty, A. M. (1984),High-frequency acoustic backscattering and seismic attenuation. J. Geophys. Res89, 3172–3176.Google Scholar
  63. Dainty, A. M., Toksöz, M. N., Anderson K. R., Pines, P. J., Nakamura, Y. andLatham, G. (1974),Seismic scattering and shallow structure of the Moon in Oceanus Procellarum. Moon9, 11–29.Google Scholar
  64. Dainty, A. M. andToksöz, M. N. (1977),Elastic wave scattering in a highly scattering medium, a diffusion approach. J. Geophys.43, 375–388.Google Scholar
  65. Dainty, A. M. andToksöz, M. N. (1981),Seismic codas on the Earth and the Moon: a comparison. Phys. Earth Plant. Interiors26, 250–260.Google Scholar
  66. Del Pezzo, E., Ferulano, F., Giarrusso, A. andMartini, M. (1983),Seismic coda, Q and scaling law of the source spectra at the Aeolian Islands, southern Italy. Bull. Seism. Soc. Am.73, 97–108.Google Scholar
  67. Del Pezzo, E. andZollo, A. (1984),Attenuation of coda waves and turbidity coefficient in central Italy. Bull. Seism. Soc. Am.74, 2655–2659.Google Scholar
  68. Del Pezzo, E., Rovelli, A. andZonno, G. (1985),Seismic Q and site effects on seismograms of local earthquakes in the Ancona region (central Italy). Annales Geophysicae3 (5), 629–636.Google Scholar
  69. Der, Z., Marshall, M. E., O'Donnell, A. andMcElfresh, T. W. (1984),Spatial coherence structure and attenuation of the L g phase, site effects, and the interpretation of the Lg coda. Bull. Seism. Soc. Am.74, 1125–1147.Google Scholar
  70. Doornbos, D. J. (1974),Seismic wave scattering near caustics: observations of PKKP precursors. Nature247, 352–353.Google Scholar
  71. Doornbos, D. J. (1976),Characteristics of lower mantle inhomogeneities from scattered waves. Geophys. J. R. Astr. Soc.44, 447–470.Google Scholar
  72. Doornbos, D. J. andHusebye, E. S. (1972),Array analyses of PKP phases and their prescursors. Phys. Earth Planet. Interiors5, 387–399.Google Scholar
  73. Douglas, A., Marshall, P. D., Gibbs, P. G., Young, J. B. andBlamey, C. (1973),Signal complexity reexamined. Geophys. J.33, 195–221.Google Scholar
  74. Dunkin, J. W. (1969),Scattering of transient, spherical P waves by a randomly inhomogeneous elastic halfspace. Geophysics34, 357–382.Google Scholar
  75. Dwyer, J. J., Herrmann, R. B. andNuttli, O. W. (1981),Numerical study of attenuation of high frequency L g-waves in the new Madrid seismic region. U.S. Geol. Surv., Open-File Rept. 81-112, 131 pp.Google Scholar
  76. Dwyer, J. J., Herrmann, R. B. andNuttli, O. W. (1983),Spatial attenuation of the L g-wave in the central United States. Bull. Seism. Soc. Am.73, 781–796.Google Scholar
  77. Einspruch, N. G., Witterholt, E. J. andTrull, R. (1960),Scattering of a plane transverse wave by a spherical obstacle in an elastic medium. J. Appl. Phys.31, 5, 806–818.Google Scholar
  78. Espinosa, A. F. (1968),Ground amplification studies of short-period seismic waves, InStudies in Seismicity and Earthquake Damage Statistics, Part I; Report for Housing and Urban Development agency (HUD), ESSA Technical Report, Coast and Geodetic Survey, 1–12.Google Scholar
  79. Espinosa, A. F. (1969),Ground amplification of short-period seismic waves at two sites near Bakersfield, California. Earthquake Notes40, 3–20.Google Scholar
  80. Espinosa, A. F. (1971),Ground surface motion synthesis and theoretical amplification effects due to shear waves [abs.], General Assembly IASPEI, Symposium on Forerunners of Strong Earthquakes, Moscow, SSSR3, 34 (I-5), and Acad. Sci. Comptes Rendus17, 128.Google Scholar
  81. Espinosa, A. F. (1977),Particle velocity attenuation relations, San Fernando earthquake of February 9, 1971. Bull. Seism. Soc. Am.67, 1195–1214.Google Scholar
  82. Espinosa, A. F. (1981),Seismic wave attenuation studies in the contiguous United States, InSummaries of Technical Reports. vol XII, U.S. Geol. Surv., Open-File Rept. 81-833.Google Scholar
  83. Espinosa, A. F. (1984),L g-wave attenuation in contiguous United States [abs.], EOS Transactions AGU, Spring meeting, American Geophysical Union, Cincinnati, Ohio65, 233.Google Scholar
  84. Espinosa, A. F. andAlgermissen, S. T. (1972a),Soil amplification studies in areas damaged by the Caracas earthquake of July 29, 1967. Proceedings of the International Conference on Microzonation11, 455–464.Google Scholar
  85. Espinosa, A. F. andAlgermissen, S. T. (1972b),Study of soil amplification factors in earthquake damaged areas: Caracas, Venezuela. National Oceanic and Atmospheric Administration, Technical Report ERL-280-ESL31, 201 pp.Google Scholar
  86. Espinosa, A. F. andAlgermissen, S. T. (1973),Ground amplification studies in the Caracas Valley and the northern coastal area of Venezuela. Proceedings of the 5th World Conference on Earthquake Engineering, Rome, Italy2, 1–6.Google Scholar
  87. Espinosa, A. F. andLopez-Arroyo, A. (1977),Earthquake instrumental intensity from strong ground motion records: San Fernando earthquake. Proceedings of the 6th World Conference on Earthquake Engineering, New Delhi, India2, 1–7.Google Scholar
  88. Evernden, J. F. (1977),Spectral characteristics of the P coda of Eurasian earthquakes and explosions. Bull. Seism. Soc. Am.67, 1153–1171.Google Scholar
  89. Evernden, J. F. andKohler, W. M. (1979),Further study of spectral composition of P codas of earthquakes and explosions. Bull Seism. Soc. Am.69, 483–511.Google Scholar
  90. Ewing, W. M., Jardentzky, W. S. andPress, F. (1957),Elastic Waves in Layered Media (McGraw-Hill, New York).Google Scholar
  91. Fedotov, S. A. andBoldyrev, S. A. (1969),Frequency dependence of the body-wave absorption in the crust and the upper mantle of the Kuril Island chain. (English Trans.), Izv. Akad. Nauk SSSR, Fiz. Zemli9, 553–562.Google Scholar
  92. Fehler, M. (1979),Seismological investigation of the mechanical properties of a hot dry rock geothermal system. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts.Google Scholar
  93. Frankel, A. (1982),The effects of attenuation and site response on the spectra of microearthquakes in the northeastern Caribbean. Bull. Seism. Soc. Am.72, 1379–1402.Google Scholar
  94. Frankel, A. andClayton, R. W. (1984),A finite difference simulation of wave propagation in two-dimensional random media. Bull. Seism. Soc. Am.74, 2167–2186.Google Scholar
  95. Frankel, A. andClayton, R. W. (1986),Finite difference simulations of seismic scattering: implications for the propagation of short-period seismic waves in the crust and models of crustal heterogeneity. J. Geophys. Res.91, 6465–6489.Google Scholar
  96. Frisch, U. (1968),Wave propagation in random media, InProbabilistic Methods in Applied Mathematics. vol. 1 (ed. A. T. Bharucha-Reid) (Academic Press, New York) pp. 76–198.Google Scholar
  97. Gao, L. S. (1984),Coda waves analysis for distinguishing attenuation due to isotropic scattering from attenauation due to absorption. Pure Appl. Geophys.122, 1–9.Google Scholar
  98. Gao, L. S., Lee, L. C., Biswas, N. N. andAki, K. (1983a),Comparison of the effects between single and multiple scattering on coda waves for local earthquakes. Bull. Seism. Soc. Am.73, 377–389.Google Scholar
  99. Gao, L. S., Biswas, N. N., Lee L. C. andAki, K. (1983b),Effects of multiple scattering on coda waves in three-dimensional medium. Pure Appl. Geophys.121, 3–15.Google Scholar
  100. Gelchinsky, B. Ya. (1982),Scattering of waves by a quasi-thin body of arbitrary shape. Geophys. J. R. Astr. Soc.71, 425–453.Google Scholar
  101. Greenfield, R. J. (1971),Short-period P wave generation by Rayleigh wave scattering at Novaya Zemlya. J. Geophys. Res.76, 7988–8002.Google Scholar
  102. Gusev, A. A. (1986),Two dilatancy-based models to explain coda-wave precursors and P/S spectral ratio, paper presented at the European Seismological Commission Assembly at Kiel, West Germany.Google Scholar
  103. Gusev, A. A. andLemzikov, V. K. (1983),Estimation of shear wave scattering in crust and upper mantle of Kamchatka from observations of Shipunsky station (in Russian). Vulk. Seismol.1, 96–107.Google Scholar
  104. Gusev, A. A. andLemzikov, V. K. (1984),The anomalies of small earthquake coda wave characteristics before the three large earthquakes in the Kuril-Kamchatka zone (in Russian). Vulk. Seismol.4, 76–90.Google Scholar
  105. Gusev, A. A. andLemzikov, V. K. (1985),Properties of scattered elastic waves in the lithosphere of Kamchatka: Parameters and temporal variations. Tectonophysics112, 137–153.Google Scholar
  106. Gusev, A. A. andAbubakirov, I. R. (1986),Monto-Carlo simulation of record envelope of a near earthquake, paper presented at the European Seismological Commission Assembly at Kiel, West Germany.Google Scholar
  107. Haddon, R. A. W. (1972),Corrugations on the mantle-core boundary or transitions layers between inner and outer cores? [abs.], EOS Transactions AGU53, 600.Google Scholar
  108. Haddon, R. A. W. (1978),Scattering of seismic body waves by small random inhomogeneities in the earth. NORSAR Scientific Report No. 3-77/78.Google Scholar
  109. Haddon, R. A. W. andCleary, J. R. (1974),Evidence for scattering of PKP waves near the mantle-core boundary. Phys. Earth Planet. Interiors8, 211–234.Google Scholar
  110. Hasegawa, H. S. (1969),A study of the effect of the Yellowknife crustal structure upon the P coda of teleseismic events. Geophys. J. R. Astr. Soc.28, 159–175.Google Scholar
  111. Hasegawa, H. S. (1970),Short-period P-coda characteristics in the eastern Canadian Shield. Bull. Seism. Soc. Am.60, 839–858.Google Scholar
  112. Havskov, J. J. andMacias, M. (1983),A coda-length magnitude scale for some Mexican stations (Spanish abs.). Geofis. Int.22, 205–213.Google Scholar
  113. Herraiz, M. (1982),Microsismicidad en el campo próximo. Análisis de generación de ondas de coda y parámetros fisicos asociados. Tesis Doct., U. Complutense, Madrid, Spain.Google Scholar
  114. Herraiz, M. andMezcua, J. (1982),Recent improvement of the study of microseismic data based on coda analysis (in Spanish, English abs.). Rvta. Geofis.38, 167–178.Google Scholar
  115. Herraiz, M. andMezcua, J. (1984),Application of coda wave analysis to analog recorded data. Annales Geophysicae2 (5), 545–552.Google Scholar
  116. Herraiz, M. andEspinosa, A. F. (1986),Scattering and attenuation of high-frequency seismic waves: development of the theory of coda waves. U.S. Geol. Surv., Open-File Rept. 86-455, 92 pp.Google Scholar
  117. Herrera, I. (1965),A perturbation method for elastic wave propagation, III—thin inhomogeneities. Geofis. Int.5, 1–14.Google Scholar
  118. Herrera, I. andMal, A. K. (1965),A perturbation method for elastic wave propagation, II—small inhomogeneities. J. Geophys. Res.70, 871–883.Google Scholar
  119. Herrmann, R. B. (1975),The use of duration as a measure of seismic moment and magnitude. Bull. Seism. Soc. Am.65, 899–913.Google Scholar
  120. Herrmann, R. B. (1977),A method for synthesis of the seismic coda of local earthquakes. J. Geophys.43, 341–350.Google Scholar
  121. Herrmann, R. B. (1980),Q estimates using the coda of local earthquakes. Bull. Seism. Soc. Am.70, 447–468.Google Scholar
  122. Hinderer, S. (1979),Etude du facteur de Qualité Q de Région Arette-Larrau (Pyrenées-Atlantiques) a partir de la coda de seismes locaux. Memoire presentée a l'Institut de Physique du Globe de l'Université Louis Pasteur de Strasbourg pour l'obtention de Diplome d'Ingenieur Geophysicien.Google Scholar
  123. Hirn, A. andNercessian, A. (1980),Mont Doré: étude structurale tri-dimensionelle par des méthodes de sismique transmission. Rep. on contract 578 78 EGF, R and D Program Geothermal Energy, Commission of the European Communities, 118 pp.Google Scholar
  124. Hoang-Trong, P. (1983),Some medium properties of the Hohenzollerngraben (Swabian Jura. W. Germany) inferred from Q p/Qs ratio analysis. Phys. Earth Planet. Int.31, 119–131.Google Scholar
  125. Howe, M. S. (1971a),Wave propagation in random media. J. Fluid Mech.45, 769–783.Google Scholar
  126. Howe, M. S. (1971b),On wave scattering by random inhomogeneities, with application to the theory of weak bores. J. Fluid Mech.45, 785–804.Google Scholar
  127. Hudson, J. A. (1977),Scattered waves in the coda of P. J. Geophys.43, 359–374.Google Scholar
  128. Hudson, J. A. (1982),Use of stochastic models in seismology. Geophys. J. R. Astr. Soc.69, 649–657.Google Scholar
  129. Hudson, J. A. andHeritage, J. R. (1981),The use of the Born approximation in seismic scattering problems Geophys. J. R. Astr. Soc.66, 221–240.Google Scholar
  130. Husebye, E. S., King, D. W. andHaddon, R. A. W. (1976),Precursors to PKIKP and seismic wave scattering near the mantle-core boundary. J. Geophys. Res.81, 1870–1882.Google Scholar
  131. Ishimaru, A. (1978),Wave Propagation and Scattering in Random Media, I and II (Academic Press, New York).Google Scholar
  132. Jeffreys, H. (1929), (1959),The Earth, its origin, history and physical constitution (Cambridge University Press), 2nd edition, 1929, 4th edition, 1959.Google Scholar
  133. Jin, A. (1981),Duration of coda waves and the back-scattering coefficient. paper presented at the Symposium on Seismology in China, State Seismol. Bur., Shanghai, China.Google Scholar
  134. Jin, A., Cao, T. (1986),Regional change of coda Q in the ocean lithosphere. J. Geophys. Res.90, 8651–8659.Google Scholar
  135. Jin, A. andAki, K. (1986),Temporal change in coda Q before the Tangshan earthquake of 1976 and the Haicheng earthquake of 1975. J. Geophys. Res.91, 665–673.Google Scholar
  136. Jones, F. B., Long, L. T. andMcKee, J. H. (1977),Study of the attenuation and azimuthal dependence of seismic-wave propagation in the southeastern United States. Bull. Seism. Soc. Am.67, 1503–1513.Google Scholar
  137. Kanamori, H. (1981),The nature of seismicity patterns before large earthquakes, InEarthquake Prediction, An International Review. Maurice Ewing Series,4, 1–20.Google Scholar
  138. Karal, F. C. andKeller, J. B. (1964),Elastic, electromagnetic and other waves in a random medium. J. Math. Phys.5, 537–547.Google Scholar
  139. Keller, J. B. (1960),Wave propagation in random media. Proc. 13th Symp. Applied Mathematics, Am. Mathematical Society, New York, pp. 227–246.Google Scholar
  140. Keller, J. B. (1964),Stochastic equations and wave propagation in random media. Proc. 16th Symp. Applied Mathematics, Am. Mathematical Soc., New York, pp. 145–170.Google Scholar
  141. Kennett, B. L. N. (1972),Seismic waves in laterally inhomogeneous media. Geophys. J. R. Astr. Soc.27, 301–336.Google Scholar
  142. Kikuchi, M. (1981),Dispersion and attenuation of elastic waves due to multiple scattering from cracks. Phys. Earth Planet. Interiors27, 100–105.Google Scholar
  143. King, D. W., Haddon, R. A. W. andCleary, J. R. (1973),Evidence for seismic wave scattering in the ‘D’ layer. Earth Planet. Sci. Lett.20, 353–356.Google Scholar
  144. King, D. W. andCleary, J. R. (1974),A note on the interpretation of precursors to PKPPKP. Bull. Seism. Soc. Am.64, 721–723.Google Scholar
  145. King, D. W., Haddon, R. A. W. andCleary, J. R. (1974),Array analysis of precursors to PKIKP in the distance range 128° to 142°. Geophys. J.37, 157–173.Google Scholar
  146. King, D. W., Haddon, R. A. W. andHusebye, E. S. (1975),Precursors to PP. Phys. Earth Planet. Interiors10, 103–127.Google Scholar
  147. Knopff, L. (1959a),Scattering of compressional waves by spherical obstacles. Geophysics24, 30–39.Google Scholar
  148. Knopoff, L. (1959b),Scattering of shear waves by spherical obstacles. Geophysics24, 209–219.Google Scholar
  149. Knopoff, L. andHudson, J. A. (1964),Scattering of elastic waves by small inhomogeneities. J. Acoust. Soc. Am.36, 338–343.Google Scholar
  150. Knopoff, L. andHudson, J. A. (1967),Frequency dependence of amplitude of scattered elastic waves. J. Acoust. Soc. Am.42, 18–20.Google Scholar
  151. Kopnichev, Y. F. (1975),A model of generation of the tail of the seismogram (English Trans.). Dokl. Akad. Nauk SSSR222, 13–15.Google Scholar
  152. Kopnichev, Y. F. (1977a),Models for the formation of the coda of the longitudinal wave (English Trans.). Dokl. Nauk SSSR234, 13–15.Google Scholar
  153. Kopnichev, Y. F. (1977b),The role of multiple scattering in the formation of a seismogram's tail (English Trans.). Izv. Akad. Nauk SSSR, Fiz. Zemli13, 394–398.Google Scholar
  154. Kopnichev, Y. F. (1980),Statistical models for the generation of coda and short-period L g-phases and the results of their joint investigation (in Russian). Izv. Akad. Nauk SSSR, Fiz. Zemli2, 22–35.Google Scholar
  155. Korvin, G. (1983),General theorem on mean wave attenuation. Geophys. Trans.29 (2), 191–202.Google Scholar
  156. Kovach, R. L. (1978),Seismic surface waves and crustal and upper mantle structure. Rev. Geophys. Space Phys.16, 1–13.Google Scholar
  157. Landau, L. P. andLifshitz, E. M. (1959),Fluid Mechanics (Pergamon Press, London).Google Scholar
  158. Latham, G. V., Ewing, M., Press, F., Sutton, G., Dorman, J., Nakamura, Y., Toksöz, N., Wiggins, R., Derr, J. andDuennebier, F. (1970),Passive seismic experiment. Science167, 455–457.Google Scholar
  159. Latham, G. V., Ewing, M., Press, F., Sutton, G., Dorman, J., Nakamura, Y., Toksöz, N., Duennebier, F. andLammlein, D. (1971),Passive seismic experiment. NASA Spec. Publ. SP-272, 133–161.Google Scholar
  160. Lee, W. B. andSolomon, S. C. (1978),Simultaneous inversion of surface wave phase velocity and attenuation: Love waves in western North America. J. Geophys. Res.83, 3389–3400.Google Scholar
  161. Lee, W. H. K., Bennett, R. E. andMeagher, K. L. (1972),A method of estimating magnitude of local earthquakes from signal duration. Open-file Report, Nat. Center for Earthquake Res., U. S. Geol. Surv., Menlo Park, California, 28 pp.Google Scholar
  162. Lee, W. H. K., Aki, K., Chouet, B., Newberry, J. T. andTottingham, D. M. (1985),Mapping coda Q(ω) in California using the USGS earthquake data archiving and processing system [abs.]. Seism. Soc. Am. 1985 annual meeting, Earthquake Notes55, 15.Google Scholar
  163. Lee, W. H. K., Aki, K., Chouet, B., Johnson, P., Marks, S., Newberry, J. T., Ryall, A. S., Stewart, S. W. andTottingham, D. M. (1986),A preliminary study of coda Q in California and Nevada. Bull. Seism. Soc. Am.76, 1143–1150.Google Scholar
  164. Levin, F. K. andRobinson, D. J. (1969),Scattering by a random field of surface scatterers. Geophysics34, 170–179.Google Scholar
  165. Lighthill, M. J. (1953),Interaction of turbulence with sound or shock waves. Proc. Camb. Phil. Soc.49, 531.Google Scholar
  166. Malin, P. E. (1980),A first-order scattering solution for modeling elastic wave codas, I. The acoustic case. Geophys. J.63, 361–380.Google Scholar
  167. Malin, P. E. andPhinney, R. A. (1984),On the relative scattering of P and S waves. Geophys. J. R. Astr. Soc.80, 603–618.Google Scholar
  168. Maruyama, T. (1963),On the force equivalents of dynamic elastic dislocations with reference to earthquake mechanism. Bull. Earthquake Res. Inst., Tokyo Univ.41, 467–486.Google Scholar
  169. Matsunami, K. (1981),Scattering of P waves by random velocity heterogeneities. Bull. Disas. Prev. Res. Inst., Kyoto Univ.31, 59–78.Google Scholar
  170. Menke, W. (1982),On extending Biot's theory of multiple scattering at low frequencies from acoustic to elastic media. Geophys. J. R. Astr. Soc.69, 819–830.Google Scholar
  171. Menke, W. (1983a),A formula for the apparent attenuation of acoustic waves in randomly layered media. Geophys. J. R. Astr. Soc.75, 541–544.Google Scholar
  172. Menke, W. (1983b),On the effect of P-S coupling on the apparent attenuation of elastic waves in randomly layered media. Geophys. Res. Lett.10, 1145–1147.Google Scholar
  173. Menke, W (1984),Asymptotic formulas for the apparent Q of weakly scattering three-dimensional media. Bull. Seism. Soc. Am.74, 1079–1081.Google Scholar
  174. Menke, W. andChen, R. L. (1984),Numerical studies of the coda fall-off rate of multiply scattered waves in randomly layered media. Bull Seism. Soc. Am.74, 1605–1614.Google Scholar
  175. Mereu, R. F. andOjo, S. B. (1981),The scattering of seismic waves through a crust and upper mantle with random lateral and vertical inhomogeneities. Phys. Earth Planet. Interiors26, 233–240.Google Scholar
  176. Mie, G. (1908),Beiträge zur Optik trüber Medien, speziell holloidaler Metallösungen. Annalen der Physik25, 377.Google Scholar
  177. Miles, J. W. (1960),Scattering of elastic waves by small inhomogeneities. Geophysics15, 642–648.Google Scholar
  178. Mitchell, B. (1981),Regional variation and frequency dependence of Q β in the crust of the United States. Bull Seism. Soc. Am.71, 1531–1538.Google Scholar
  179. Modiano, T. andHatzfeld, D. (1982),Experimental study of the spectral content for shallow earthquakes. Bull Seism. Soc. Am.72, 1739–1758.Google Scholar
  180. Mogi, K. (1977),Seismic activity and earthquake prediction (in Japanese). Proceedings of the Symposium on Earthquake Prediction Research, 203–214.Google Scholar
  181. Molnar, P., Jacob, K. H. andMcCamy, K. (1973),Implications of Archambeau's earthquake source theory to step faults. Bull. Seism. Soc. Am.63, 101–104.Google Scholar
  182. Morse, P. M. (1968),Theoretical Acoustics (McGraw-Hill, New York.)Google Scholar
  183. Morse, P. M. andFeshbach, H. (1953),Methods of Theoretical Physics (McGraw-Hill, New York.)Google Scholar
  184. Mott, N. F. andMassey, H. S. W. (1965),The Theory of Atomic Collisions. 3rd edition (Oxford University Press).Google Scholar
  185. Nakamura, Y. (1976),Seismic energy transmission in the lunar surface zone determined from signals generated by movement of lunar rovers. Bull Seism. Soc. Am.66, 593–606.Google Scholar
  186. Nakamura, Y. (1977a),HFF events: shallow earthquakes. Phys. Earth Planet. Interiors16, 271–273.Google Scholar
  187. Nakamura, Y. (1977b),Seismic energy transmissions in an intensively scattering environment. J. Geophys.43, 389–399.Google Scholar
  188. Nakamura, Y., Latham, G. V., Ewing, M. andDorman, J (1970),Lunar seismic energy transmissions [abs.]. EOS Transactions AGU51, 776.Google Scholar
  189. Nersesov, I. L., Kopnichev, Y. F. andVostrikov, G. A. (1975),Calibration of earthquakes in terms of magnitude, based on coda waves, at distances as great as 3000 km (English Trans.). Dokl. Akad. Nauk SSSR222, 7–9.Google Scholar
  190. Nikolayev, A. V. (1968),Seismic properties of weakly heterogeneous media (English Trans.). Izv. Akad. Nauk SSSR, Fiz. Zemli2, 83–87.Google Scholar
  191. Nikolayev, A. V. andTregub, F. S. (1970),A statistical model of the earth crust: Method and results. Tectonophysics10, 573–578.Google Scholar
  192. Novelo-Casanova, D. A., Berg, E., Hsu, V. andHelsley, C. E. (1985),Time-space variation seismic S-wave coda attenuation (Q−1) and magnitude distribution (b-values) for the Petatlán earthquake. Geophys. Res. Lett.12, 789–792.Google Scholar
  193. Novelo-Casanova, D. A. andButler, R. (1986),High frequency seismic coda and scattering in the northwest Pacific. Bull. Seism. Soc. Am.76, 617–626.Google Scholar
  194. Nur, A. (1971),Viscous phases in rocks and the low velocity zone. J. Geophys. Res.76, 1270–1278.Google Scholar
  195. Nuttli, O. W. (1973),Seismic wave attenuation and magnitude relations for eastern North America. J. Geophys. Res.78, 876–885.Google Scholar
  196. Nuttli, O. (1978),A time-domain study of the attenuation of 10-Hz waves in the New Madrid seismic zone. Bull. Seism. Soc. Am.68, 343–355.Google Scholar
  197. Nuttli, O. W. (1980),The excitation and attenuation of seismic crustal phases in Iran. Bull. Seism. Soc. Am.70, 469–486.Google Scholar
  198. Ojo, S. B. andMereu, R. F. (1986),The effect of random velocity functions on the travel times and amplitude of seismic waves. Geophys. J. R. Astr. Soc.84, 607–618.Google Scholar
  199. Patton, H. J. (1983),L g excitation and propagation in the western United States, preprint for fifth annual DARPA/AFOSR Symposium, May, 1983.Google Scholar
  200. Pekeris, C. L. (1947),Note on the scattering of radiation in an inhomogeneous medium. Phys. Rev.71, 268–269.Google Scholar
  201. Peng, J. Y., Aki, K., Lee, W. H. K., Chouet, B., Johnson, P., Marks, S., Newberry, J. T., Ryall, A. S., Stewart, S. andTottingham, D. M. (1986),Temporal change in coda Q associated with the Round Valley, California, earthquake of November 23, 1984, submitted to J. Geophys. Res.Google Scholar
  202. Peseckis, L. L. andPomeroy, P. W. (1984),Determination of Q using L g waves and its implications for nuclear yield estimation [abs.], EOS Transactions AGU65, 995.Google Scholar
  203. Phillips, W. S. (1985),The separation of source, path and site effects on high frequency seismic waves: an analysis using coda wave techniques. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts.Google Scholar
  204. Phillips, W. S. andAki, K. (1986),Site amplification of coda waves from local earthquakes in central California. Bull. Seism. Soc. Am.76, 627–648.Google Scholar
  205. Phillips, W. S., Lee, W. H. K. andNewberry, J. T. (1986),Spacial variation of crustal coda Q in California. Submitted to Bull. Seism. Soc. Am.Google Scholar
  206. Pilant, W. (1979),Elastic Waves in the Earth (Elsevier, Amsterdam).Google Scholar
  207. Powel, C. A. andMeltzer, A. S. (1984),Scattering of P-waves beneath SCARLET in southern California. Geophys. Res. Lett.4, 481–484.Google Scholar
  208. Pulli, J. J. (1984),Attenuation of coda waves in New England. Bull. Seism. Soc. Am.74, 1149–1166.Google Scholar
  209. Pulli, J. J. andAki, K. (1981),Attenuation of seismic waves in the lithosphere: comparison of active and stable areas, InEarthquakes and Earthquake Engineering—Eastern United States, (ed. J. Beavers) (Ann Abor Science Publishers, Inc., Ann Arbor, Michigan) pp. 129–141.Google Scholar
  210. Pustovitenko, B. G. andRautian, T. G. (1977),Use of the seismic coda for the study of the attenuation of seismic waves in the Crimean region (in Russian, English abs.). Geofiz. Sb.78, 3–16.Google Scholar
  211. Rautian, T. G. andKhalturin, V. I. (1978),The use of the coda for determination of the earthquake source spectrum. Bull Seism. Soc. Am.68, 923–943.Google Scholar
  212. Rautian, T. G., Khalturin, V. I., Martinov, V. G. andMolnar, P. (1978),Preliminary analysis of the spectral content of P and S waves from local earthquakes in the Garm, Tadjikistan region. Bull. Seism. Soc. Am.68, 949–971.Google Scholar
  213. Rayleigh, J. W. S. (1986),The Theory of sound, vol. II (Dover Publications Inc., New York) (1945 edition).Google Scholar
  214. Real, C. R. andTeng, T. L. (1973),Local Richter magnitude and total signal duration in southern California. Bull Seism. Soc. Am.63, 1809–1827.Google Scholar
  215. Rebollar, C. J., Traslosheros, C. andAlvarez, R. (1985),Estimates of seismic wave attenuation in northern Baja California. Bull. Seism. Soc. Am.75, 1371–1382.Google Scholar
  216. Rhea, S. (1984),Q determined from local earthquakes in the South Carolina coastal plain. Bull. Seism. Soc. Am.74, 2257–2268.Google Scholar
  217. Richards, P. G. andMenke, W. (1983),The apparent attenuation of a scattering medium. Bull. Seism. Soc. Am.73, 1005–1022.Google Scholar
  218. Richter, C. F. (1958),Elementary Seismology (W. H. Freeman and Co., Inc., San Francisco, California).Google Scholar
  219. Rodriguez, M., Havskov, J. andSingh, S. K. (1983),Q from coda waves near Petatlan, Guerrero, Mexico. Bull. Seism. Soc. Am.73, 321–326.Google Scholar
  220. Roecker, W. W. (1981),Seismicity and tectonics of the Pamir-Hindu Kush region of central Asia. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge Massachusetts.Google Scholar
  221. Roecker, S. W., Tucker, B., King, J. andHatzfeld, D. (1982),Estimates of Q in central Asia as a function of frequency and depth using the coda of locally recorded earthquakes. Bull. Seism. Soc. Am.72, 129–149.Google Scholar
  222. Rovelli, A. (1982),On the frequency dependence of Q in Friuli from short-period digital records. Bull. Seism. Soc. Am.72, 2369–2372.Google Scholar
  223. Rovelli, A. (1983a),Frequency relationship for seismic Q β of central southern Italy from accelerograms for the Irpinia earthquake (1980), Phys. Earth Planet. Interiors32, 209–217.Google Scholar
  224. Rovelli, A. (1983b),Time-frequency analysis of seismic excitation and estimates of attenuation parameters for the Friuli (Italy) local earthquakes. Phys. Earth Planet. Interiors33, 94–110.Google Scholar
  225. Rovelli, A. (1984a),Seismic Qof the lithosphere for Montenegro region (Yugoslavia): frequency, depth and time windowing effects. Phys. Earth Planet. Interiors34, 159–172.Google Scholar
  226. Rovelli, A. (1984b),Seismic wave attenuation in southern Italy crest; scattering from random heterogeneities mechanism or intrinsic Q variations with the depth? InProblems and methods for lithosphere exploration. (R. Cassinis, ed.), in the collection Eltore Majorana International Science Series (Plenum Press, New York) 19, pp. 207–212.Google Scholar
  227. Saphira, A. (1980),Magnitude determination from coda duration of underground nuclear explosions. Seismological Section, Uppsala, Sweden, Report 2-80, 25 pp.Google Scholar
  228. Sato, H. (1977a),Energy propagation including scattering effects. Single isotropic scattering approximation. J. Phys. Earth25, 27–41.Google Scholar
  229. Sato, H. (1977b),Single isotropic scattering model including wave conversions. Simple theoretical model of the short-period body wave propagation. J. Phys. Earth25, 163–176.Google Scholar
  230. Sato, H. (1978),Mean free path of S-waves under the Kanto District of Japan. J. Phys. Earth26, 185–198.Google Scholar
  231. Sato, H. (1979),Wave propagation in one-dimensional inhomogeneous elastic media. J. Phys. Earth27, 455–466.Google Scholar
  232. Sato, H. (1981),Attenuation of elastic waves in one-dimensional inhomogeneous elastic media. Phys. Earth Planet. Interiors26, 244–245.Google Scholar
  233. Sato, H. (1982a),Amplitude attenuation of impulsive waves in random media based on travel time corrected mean wave formalism. J. Acoust. Soc. Am.71, 559–564.Google Scholar
  234. Sato, H. (1982b),Attenuation of S waves in the lithosphere due to scattering by its random velocity structure. J. Geophys. Res.87, 7779–7785.Google Scholar
  235. Sato, H. (1982c),Coda wave excitation due to nonisotropic scattering and nonspherical source radiation. J. Geophys. Res.87, 8665–8676.Google Scholar
  236. Sato, H. (1984),Attenuation of envelope formation of three-component seismograms of small local earthquakes in randomly inhomogeneous lithosphere. J. Geophys. Res.89, 1221–1241.Google Scholar
  237. Sato, H. (1986),Temporal change in attenuation intensity before and after the eastern Yamanashi earthquake of 1983, in central Japan. J. Geophys. Res.91, 2049–2061.Google Scholar
  238. Sato, H. andMatsumura, S. (1980a),Three-dimensional analysis of scattered P waves on the basis of the PP single isotropic scattering model. J. Phys. Earth28, 521–530.Google Scholar
  239. Sato, H. andMatsumura, S. (1980b),Q −1 values for S waves (2–32 Hz) under the Kanto district (in Japanese). Zisin33, 541–543.Google Scholar
  240. Sato, R. andEspinosa, A. F. (1964),Dissipation in the earth's mantle from waves multiply reflected at the core-mantle boundary [abs.]. EOS Transactions AGU, American Geophysical Union 45th Ann. Meeting, Washington, D.C.Google Scholar
  241. Sato, R. andEspinosa, A. F. (1967),Dissipation in the earth's mantle and rigidity and viscosity in the earth's core determined from waves multiply reflected from the core-mantle boundary. Bull. Seism. Soc. Am.57, 829–856.Google Scholar
  242. Savage, J. (1966),Thermoelastic attenuation of elastic waves by cracks. J. Geophys. Res.71, 3929–3938.Google Scholar
  243. Scheimer, J. andLanders, T. E. (1974),Short period coda of a local event at LASA, Seismic Discrimination. Semiannual Tech. Sum. 42 Lincoln Lab., Massachusetts Institute of Technology, Cambridge, Massachusetts.Google Scholar
  244. Scherbaum, F. andKisslinger, C. (1985),Coda Q in the Adak seismic zone. Bull. Seism. Soc. Am.75, 615–620.Google Scholar
  245. Singh, S. (1981),Regionalization of crustal Q in the continental United States. Ph.D. Thesis, St. Louis University, St. Louis, Missouri.Google Scholar
  246. Singh, S. K. andHerrmann, R. B. (1983),Regionalization of crustal coda Q in the continental United States. J. Geophys. Res.88, 527–538.Google Scholar
  247. Snieder, R. (1986),3-D linearized scattering of surface waves and a formalism for surface wave holography. Geophys. J. R. Astr. Soc.84, 581–605.Google Scholar
  248. Sobczyk, K. (1985),Stochastic Wave Propagation (Elsevier, Amsterdam).Google Scholar
  249. Solomon, S. C. (1972),Seismic wave attenuation and partial melting in the upper mantle of North America. J. Geophys. Res.77, 1483–1502.Google Scholar
  250. Soloviev, S. L. (1965),Seismicity of Sakhalin. Bull. Earthquake Res. Inst., Tokyo Univ.43, 95–102.Google Scholar
  251. Street, R. L. (1976),Scaling northeastern United States/southeastern Canadian earthquakes by their L g waves. Bull. Seism. Soc. Am.66, 1525–1537.Google Scholar
  252. Subash, S. M. G. (1979),Interpretation de l'origine de la coda de seismes locaux déduite de leur propietés sur 3 composants. Thése soutenue á L'Université L. Pasteur de Strasbourg.Google Scholar
  253. Subash, S. M. G. andChoudhury, M. A. (1979),Coda power and modulation characteristics of a complex P signal from underground nuclear explosions. Tectonophysics53, T33-T39.Google Scholar
  254. Subash, S. M. G. andGir, R. (1979),Test of surface-body wave hypotheses for the Q-frequency dependence of coda. Tectonophysics57, T27-T33.Google Scholar
  255. Suteau, A. M. andWhitcomb, J. H. (1979),A local earthquake coda magnitude and its relation to duration, moment Mo,and local Richter magnitude ML. Bull. Seism. Soc. Am.69, 353–368.Google Scholar
  256. Sutton, G. M., Mitronovas, W. andPomeroy, P. W. (1967),Short-period seismic energy radiation patterns from underground nuclear explosions and small magnitude earthquakes. Bull. Seism. Soc. Am.57, 249–267.Google Scholar
  257. Suzuki, S. (1972),Anomalous attenuation of P-waves in the Matsushiro earthquake swarm area. J. Phys. Earth20, 1–21.Google Scholar
  258. Suzuki, H., Ikeda, R., Mikoshiba, T., Kinoshita, S., Sato, H. andTakahashi, H. (1981),Deep well logs in the Kanto-Tokai area (in Japanese). Rev. Res. Disast. Prev.65, 1–162.Google Scholar
  259. Takano, K. (1971),Analysis of seismic coda of ultra-microearthquakes in the Matsushiro area, A comparison with Parkfield, California. J. Phys. Earth19, 209–216.Google Scholar
  260. Tatarskii, V. I. (1961),Wave Propagation in a Turbulent Medium, (McGraw-Hill, New York).Google Scholar
  261. Taylor, S. R. andBonner, B. P. (1986),Attenuation and scattering of broadband P and S waves across North America. J. Geophys. Res.91, 7309–7325.Google Scholar
  262. Toksöz, N., Dainty, A. M., Solomon, S. C. andAnderson, K. R. (1974),Structure of the Moon. Rev. Geophys. Space Phys.12, 539–567.Google Scholar
  263. Tsai, Y. B. andAki, K. (1969),Simultaneous determination of the seismic moment and attenuation of seismic surface waves. Bull. Seism. Soc. Am.59, 275–287.Google Scholar
  264. Tsujiura, M. (1966),Frequency analysis of seismic waves. 1, Bull. Earthquake Res. Inst., Tokyo Univ.44, 873–891.Google Scholar
  265. Tsujiura, M. (1967),Frequency analysis of seismic waves. 2, Bull Earthquake Res. Inst., Tokyo Univ.45, 973–995.Google Scholar
  266. Tsujiura, M. (1969),Regional variation of P-wave spectra. 1, Bull. Earthquake Res. Inst., Tokyo Univ.47, 613–633.Google Scholar
  267. Tsujiura, M. (1978),Spectral analysis of the coda waves from local earthquakes. Bull. Earthquake Res Inst., Tokyo Univ.53, 1–48.Google Scholar
  268. Tsukuda, T. (1985),Coda Q before and after a medium-scale earthquake, paper presented at the 23rd General Assembly of IASPEI, Tokyo.Google Scholar
  269. Tsumura, K. (1967),Determination of earthquake magnitude from total duration of oscillation. Bull. Earthquake Res. Inst., Tokyo Univ.45, 7–18.Google Scholar
  270. Uscinski, B. DJ. (1977),The Elements of Wave Propagation in Random Media (McGraw-Hill, New York).Google Scholar
  271. Varadan, V. K., Varadan, V. V. andPao, Y. H. (1978),Multiple scattering of elastic waves by cylinders of arbitrary cross-section I, SH waves. J. Acoust. Soc. Am.63, 1310–1319.Google Scholar
  272. Varadan, V. K. andVaradan, V. V. (1979),Frequency dependence of elastic (SH-) wave velocity and attenuation in anisotropic two-phase media. Wave Motion1, 53–63.Google Scholar
  273. Vinnik, L. P. (1974),Scattering of longitudinal waves in the earth (English Trans.). Izv. Akad. Nauk SSSR, Fiz. Zemli11, 718–728.Google Scholar
  274. Vinnik, L. P. (1981),Evaluation of the effective cross-section of scattering in the lithosphere. Phys. Earth Planet. Interiors26, 268–284.Google Scholar
  275. Vostrikov, G. A. (1975),Estimate of the seismic moment of local earthquakes from the tail portion of the seismogram (English Trans.). Dokl. Akad. Nauk SSSR220, 9–12.Google Scholar
  276. Wesley, M. P. (1965),Diffusion of seismic energy in the near range. J. Geophys. Res.70, 5099–5106.Google Scholar
  277. West, B. J. andShlesinger, M. F. (1984),The fractal interpretation of the weak scattering of elastic waves. J. Statis. Phys.36, 779–786.Google Scholar
  278. Wilson, M., Wyss, M. andKoyanagi, R. (1983),Temporal attenuation change in the Koae fault system, southern Hawaii [abs.]. EOS Transactions AGU64, 761.Google Scholar
  279. Wu, R. S. (1982a),Attenuation of short period seismic waves due to scattering. Geophys. Res. Lett.9, 9–12.Google Scholar
  280. Wu, R. S. (1982b),Mean field attenuation and amplitude attenuation due to wave scattering. Wave Motion4, 305–316.Google Scholar
  281. Wu, R. S. (1984a),Seismic wave scattering and the small scale inhomogeneities in the lithosphere. Ph.D. Thesis Massachusetts Institute of Technology, Cambridge, Massachusetts.Google Scholar
  282. Wu. R. S. (1984b),The scattering pattern of a single scatterer in an elastic medium and coda wave. DARPA report.Google Scholar
  283. Wu, R. S. (1985a),Multiple scattering and energy transfer of seismic waves, separation of scattering effect from intrinsic attenuation, I. theoretical modeling. Geophys. J. R. Astr. Soc.82, 57–80.Google Scholar
  284. Wu. R. S. (1985b),Fractal dimensions of fault surfaces and the inhomogeneity spectrum of the lithosphere revealed from seismic wave scattering, to be published in Proceedings of the International Symposium on Multiple Scattering of Waves in Random Media and Random Rough Surfaces, July 29–Aug. 2, 1985, Pennsylvania State University.Google Scholar
  285. Wu, R. S. (1986),Heterogeneity spectrum, wave scattering response of a fractal random medium and the rupture processes in the medium. J. Wave-Material Interaction1, 79–96.Google Scholar
  286. Wu, R. S., andAki, K. (1985a),Scattering characteristics of elastic waves by an elastic heterogeneity. Geophysics50, 582–595.Google Scholar
  287. Wu, R. S. andAki, K. (1985b),Scattering of elastic waves by a random medium and the small scale inhomogeneities in the lithosphere. J. Geophys. Res.90, 10261–10276.Google Scholar
  288. Wyss, M. (1985),Precursory phenomena before large earthquakes. Earthq. Predict. Res.3, 519–543.Google Scholar
  289. Yamakawa, N. (1962),Scattering and attenuation of elastic waves. Geophys. Mag.31, 63–103.Google Scholar
  290. Ying, C. F. andTruell, R. (1956),Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid. J. Appl. Phys.27, 1087–1097.Google Scholar
  291. Zapolskii, K. K. (1960),Measurements of the level and spectral composition of short period microseisms (in Russian). Trudy Inst. Geol. Geofiz.10, 153–164.Google Scholar
  292. Zapolskii, K. K. (1971),The frequency selective seismograph station ChISS. InExperimental Seismology (in Russian) (Nauka Publishing House, Moscow) pp. 20–36.Google Scholar
  293. Zener, C. M. (1948),Elasticity and Anelasticity of Metals (University of Chicago Press, Chicago).Google Scholar
  294. Zhadin, V. V. (1979),Temporal variations in the effective Q factor of the upper layers in the lithosphere that are associated with the Ozernory earthquake of Novemeber 22, 1969, and the Ust Kamchatsk earthquake of December 15, 1971 (in Russian). Dolk. Akad. Nauk SSSR248, 580–583.Google Scholar
  295. Zhang, Y. G. andYang, G. Z. (1983),Determination of Q-value by the coda wave for a portion of Sichuan Province (in Chinese, English abs.). Acta Seism. Sinica5, 304–312.Google Scholar

Copyright information

© Birkhäuser Verlag 1987

Authors and Affiliations

  • M. Herraiz
    • 1
  • A. F. Espinosa
    • 2
  1. 1.Cátedra de Geofisica, Facultad de Ciencias FísicasUniversidad ComplutenseMadridSpain
  2. 2.M.S. 966, Denver Federal CenterU.S. Geological SurveyDenverUSA

Personalised recommendations