Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Quantitative estimates of interplate coupling inferred from outer rise earthquakes

  • 91 Accesses

  • 14 Citations

Abstract

Interplate coupling plays an important role in the seismogenesis of great interplate earthquakes at subduction zones. The spatial and temporal variations of such coupling control the patterns of subduction zone seismicity. We calculate stresses in the outer rise based on a model of oceanic plate bending and coupling at the interplate contact, to quantitatively estimate the degree of interplate coupling for the Tonga, New Hebrides, Kurile, Kamchatka, and Marianas subduction zones. Depths and focal mechanisms of outer rise earthquakes are used to constrain the stress models. We perform waveform modeling of body waves from the GDSN network to obtain reliable focal depth estimates for 24 outer rise earthquakes. A propagator matrix technique is used to calculate outer rise stresses in a bending 2-D elastic plate floating on a weak mantle. The modeling of normal and tangential loads simulates the total vertical and shear forces acting on the subducting plate. We estimate the interplate coupling by searching for an optimal tangential load at the plate interface that causes the corresponding stress regime within the plate to best fit the earthquake mechanisms in depth and location.

We find the estimated mean tangential load\(\overline f _x\) over 125–200 km width ranging between 166 and 671 bars for Tonga, the New Hebrides, the Kuriles, and Kamchatka. This magnitude of the coupling stress is generally compatible with the predicted shear stress at the plate contact from thermal-mechanical plate models byMolnar andEngland (1990), andVan den Buekel andWortel (1988). The estimated tectonic coupling,F tc , is on the order of 1012–1013 N/m for all the subduction zones.F tc for Tonga and New Hebrides is about twice as high as in the Kurile and Kamchatka arcs. The corresponding earthquake coupling forceF ec appears to be 1–10% of the tectonic coupling from our estimates. There seems to be no definitive correlation of the degree of seismic coupling with the estimated tectonic coupling. We find that outer rise earthquakes in the Marianas can be modeled using zero tangential load.

This is a preview of subscription content, log in to check access.

References

  1. Bevington, P. R.,Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill Book Company, 1969).

  2. Burbach, G. V., andFrohlich, C. (1986),Intermediate and Deep Seismicity and Lateral Structure of Subducted Lithosphere in the Circum-Pacific Region, Rev. Geophys.24, 833–874.

  3. Caldwell, J. G., Haxby, W. F., Karig, D. E., andTurcotte, D. L. (1976),On the Applicability of a Universal Elastic Trench Profile, Earth Planet. Sci. Lett.31, 239–246.

  4. Cathles, L. M. III The Viscosity of the Earth's Mantle (Princeton University Press, 1975).

  5. Chapple, W. M., andForsyth, D. W. (1979),Earthquakes and Bending of Plates at Trenches, J. Geophys. Res.84, 6729–6749.

  6. Chen, T., andForsyth, D. W. (1978),A Detailed Study of Two Earthquakes Seaward of the Tonga Trench: Implications for Mechanical Behavior of the Oceanic Lithosphere J. Geophys. Res.83, 4995–5003.

  7. Chen, W.-P., andMolnar, P. (1983), Focal Depths of Intracontinental and Intraplate Earthquakes and their Implications for the Thermal and Mechanical Properties of the Lithosphere, J. Geophys. Res.88, 4183–4214.

  8. Choy, G. L. andDewey, J. W. (1988),Rupture Process of an Extended Earthquake Sequence: Teleseismic Analysis of Chilean Earthquake of March 3, 1985, J. Geophys. Res.93, 1103–1118.

  9. Christensen, D. H., andLay, T. (1988),Large Earthquakes in the Tonga Region Associated with Subduction of the Louisville Ridge, J. Geophys. Res.93, 13,367–13,389.

  10. Christensen, D. H., andRuff, L. J. (1988),Seismic Coupling and Outer-rise Earthquakes, J. Geophys. Res.93, 13,421–13,444.

  11. Christensen, D. H., andRuff, L. J. (1983),Outer Rise Earthquakes and Seismic Coupling, Geophys. Res. Lett.10, 697–700.

  12. Das, S., andScholz, C. H. (1983),Why Large Earthquakes do not Nucleate at Shallow Depths, Nature305, 621–623.

  13. Davies, G. F. (1980),Mechanics of Subducted Lithosphere, J. Geophys. Res.85, 6304–6318.

  14. Dmowska, R., andLovison, L. C. (1992),Influence of Asperities along Subduction Interfaces on the Stressing and Seismicity of Adjacent Areas, Tectonophysics211, 23–43.

  15. Dmowska, R., Rice, J. R., Lovison, L. C., andJosell, D. (1988),Stress Transfer and Seismic Phenomena in Coupled Subduction Zones during the Earthquake Cycle, J. Geophys. Res.93, 7869–7884.

  16. Dziewonski, A. M., andAnderson, D. L. (1981)Preliminary Reference Earth Model (PREM), Phys. Earth Planet. Inter.25, 297–356.

  17. Dziewonski, A. M., Ekström, G., Franzen, J. E., andWoodhouse, J. H. (1988),Global Seismicity of 1981: Centroid-moment Tensor Solutions for 542 Earthquakes, Phys. Earth Planet. Inter.50, 155–182.

  18. Forsyth, D. W. (1982),Determinations of Focal Depths of Earthquakes Associated with the Bending of Oceanic Plates at Trenches, Phys. Earth Planet. Inter.28, 141–160.

  19. Giardini, D., andWoodhouse, J. H. (1984),Deep Seismicity and Modes of Deformation in Tonga Subduction Zone, Nature307, 505–509.

  20. Hasebe, K., Fujii, N., andYueda, S. (1970),Thermal Processes under Island Arcs, Tectonophysics10, 335–355.

  21. Heaton, T. H. (1990),Evidence for and Implications of Self-healing Pulses of Slip in Earthquake Rupture, Phys. Earth Planet. Inter.64, 1–20.

  22. Isacks, B. L., andBarazangi, M. (1977),Geometry of Benioff Zones: Lateral Segmentation and Downwards Bending of Subducted Lithosphere, Island Arcs, Deep Sea Trenches and Back-arc Basins, Maurice Ewing Series1, 99–114.

  23. Isacks, B. L., andMolnar, P. (1969),Mantle Earthquake Mechanisms and the Sinking of the Lithosphere, Nature223, 1121–1124.

  24. Jaeger, J. C., andCook, N. G. W.,Fundamentals of Rock Mechanics (London: Chapman and Hall, 1979).

  25. Jarrard, R. D. (1986),Relations among Subduction Parameters, Rev. Geophys.24, 217–284.

  26. Kagan, Y. Y., andJackson, D. D. (1991a),Long-term Earthquake Clustering, Geophys. J. Int.104, 117–133.

  27. Kagan, Y. Y., andJackson, D. D. (1991b),Seismic Gap Hypothesis: Ten Years After, J. Geophys. Res.96, 21,419–21,431.

  28. Kanamori, H. (1977),The Energy Release in Great Earthquakes, J. Geophys. Res.82, 2981–2987.

  29. Kelleher, J., Savino, J., Rowlett, H., andMcCann, W. (1974),Why and Where Great Thrust Earthquakes Occur along Island Arcs, J. Geophys. Res.79, 4889–4899.

  30. Lay, T., Astiz, L., Kanamori, H., andChristensen, D. H. (1989),Temporal Variation of Large Intraplate Earthquakes in Coupled Subduction Zones, Phys. Earth Planet. Inter.54, 258–312.

  31. Lay, T., Kanamori, H., andRuff, L. J. (1982),The Asperity Model and the Nature of Large Subduction Zone Earthquakes, Earthq. Pred. Res.1, 3–71.

  32. Molnar, P., andEngland, P. (1990),Temperatures, Heat Flux and Frictional Stress near Major Thrust Faults, J. Geophys. Res.95, 4833–4856.

  33. Ruff, L. J. (1989),Do Trench Sediments Affect Great Earthquake Occurrence in Subduction Zones? Pure and Appl. Geophys.129, 263–282.

  34. Ruff, L. J. andKanamori, H. (1983),Seismic Coupling and Uncoupling at Subduction Zones, Tectonophysics99, 99–117.

  35. Ruff, L. J., andKanamori, H. (1980),Seismicity and the Subduction Process, Phys. Earth Planet. Inter.23, 240–252.

  36. Scholl, D. W., Van Huene, R., andDieffenback, H. L. (1990),Rates of Sediment Subduction Erosion-Implications for Growth of Terrestrial Crust (abs.), EOS, Trans. AGU71, 1576.

  37. Schwartz, S. Y., Dewey, J. W., andLay, T. (1989),Influence of Fault Plane Heterogeneity on the Seismic Behavior in the Southern Kurile Islands Arc, J. Geophys. Res.94, 5637–5649.

  38. Spence, W. (1987),Slab Pull and the Seismotectonics of Subducting Lithosphere, Rev. Geophys.25, 55–69.

  39. Stauder, W. (1973),Mechanisms and Spatial Distribution of Chilean Earthquakes with Relation to Subduction of Oceanic Plate. J. Geophys. Res.78, 5033–5061.

  40. Stauder, W. (1968a),Mechanism of the Rat Island Earthquake Sequence of February 4, 1965, with Relation to Island Arcs and Sea-floor Spreading, J. Geophys. Res.73, 3847–3858.

  41. Stauder, W. (1968b),Tensional Character of Earthquake Foci Beneath the Aleutian Trench with Relation to Sea Floor Spreading, J. Geophys. Res.73, 7693–7701.

  42. Tajima, F., andKanamori, H. (1985),Global Survey of Aftershock Area Expansion Patterns, Phys. Earth Planet. Inter.40, 77–134.

  43. Toksöz, M. N., Minear, J. W., andJulian, B. P. (1971),Temperature Field and Geophysical Effects of a Downgoing Slab, J. Geophys. Res.76, 1113–1138.

  44. Toksöz, M. N., Sleep, N. H., andSmith, A. T. (1973),Evolution of the Downgoing Lithosphere and the Mechanisms of Deep Focus Earthquakes, Geophys. J. R. Astr. Soc.35, 285–310.

  45. Turcotte, D. L., McAdoo, D. C., andCaldwell, J. G. (1978),An Elastic-Perfectly Plastic Analysis of the Bending in the Lithosphere at a Trench, Tectonophysics47, 193–206.

  46. Turcotte, D. L., andSchubert, G.,Geodynamics: Applications of Continuum Physics to Geological Problems (John Wiley and Sons, 1982).

  47. Uyeda, S., andKanamori, H. (1979),Back-arc Opening and the Mode of Subduction, J. Geophys. Res.84, 1049–1061.

  48. Van den Buekel, J., andWortel, R. (1988),Thermo-mechanical Modeling of Arc-trench Regions, Tectonophysics154, 177–193.

  49. Ward, S. N. (1984),A Note on Lithospheric Bending Calculations, Geophys. J. R. Astr. Soc.78, 241–253.

  50. Ward, S. N. (1983),Body Wave Inversion: Moment Tensors and Depths of Oceanic Intraplate Bending Earthquakes, J. Geophys. Res.88, 9315–9330.

  51. Watts, A. B., Bodine, J. H., andSteckler, M. S. (1980),Observations of Flexure and the State of Stress in the Oceanic Lithosphere, J. Geophys. Res.85, 6369–6376.

  52. Wiens, D. A., andStein, S. (1983),Age Dependence of Oceanic Intraplate Seismicity and Implications for Lithospheric Evolution, J. Geophys. Res.88, 6455–6468.

  53. Willemann, R. J. (1991),Stress Propagation and Strain Rate in Subducted Lithosphere, J. Geophys. Res.96, 10,219–10,232.

  54. Yokokura, T. (1981),Viscosity of the Earth's Mantle: Inference from Dynamic Support by Flow Stress, Tectonophysics77, 35–62.

  55. Zhang, J., andLay, T. (1992),The April 5, 1990 Mariana Islands Earthquake and Subduction Zone Stresses, Phys. Earth Planet. Inter.72, 99–121.

  56. Zhang, J., Hager, B. H., andRaefsky, A. (1985),Critical Assessment of Viscous Models of Trench Topography and Corner Flow, Geophys. J. R. Astr. Soc.83, 451–475.

  57. Zhou, H.-W. (1990),Observations on Earthquake Stress Axes and Seismic Morphology of Deep Slabs, Geophys. J. Int.103, 377–401.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, X., McNally, K.C. Quantitative estimates of interplate coupling inferred from outer rise earthquakes. PAGEOPH 140, 211–255 (1993). https://doi.org/10.1007/BF00879406

Download citation

Key words

  • Interplate coupling
  • outer rise earthquakes
  • stress modeling
  • subduction zones