Cardiovascular Drugs and Therapy

, Volume 7, Issue 5, pp 767–774 | Cite as

Lowering blood lipids to treat atherosclerosis: Vascular tone, plaques, events, and mortality

  • Paolo Rubba
  • Paolo Pauciullo
  • Mario Mancini
The Cholesterol Controversy Editorial

Summary

Hypercholesterolemia has been associated with an increase in vascular tone, mainly because of an impairment of endothelium-dependent relaxation. This endothelial dysfunction occurs before any definite atherosclerotic lesion is demonstrated. In both animal models and humans the correction of hypercholesterolemia has been associated with hemodynamic improvement. Several controlled trials have demonstrated that long-term treatment with cholesterol-lowering drugs is effective in blocking progression and in some cases in inducing regression of angiographically detected arterial lesions. Arteriographies produce a negative image of the arterial lumen but do not provide sufficient information on vessel wall status. Noninvasive B-mode ultrasound has allowed a direct visualization of the arterial wall in superficial vascular districts, such as the carotid bifurcation. Wall and lesion measures are increasingly used as end points for clinical trials of antiatherosclerotic drugs. In secondary prevention, cholesterol reduction is associated with a lower incidence of coronary heart disease, although the cholesterol reduction should be at least 8–9% to have an impact on total mortality.

Key Words

atherosclerosis cholesterol vascular tone oxidized lipoproteins endothelium dependent relaxation lipid lowering drugs coronary heart disease angiography ultrasound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Osborne JA, Lento PH, Siegfried MR, Stahl GL, Fusman B, Lefer AM. Cardiovascular effects of acute hypercholesterolemia in rabbits. Reversal with lovastatin treatment.J Clin Invest 1989;83:465–473.Google Scholar
  2. 2.
    Rubba P, Mancini M. Hypercholesterolemia, blood rheology and hemodynamics.Curr Opin Lipidol 1990;1:341–345.Google Scholar
  3. 3.
    Creager MA, Cooke JP, Mendelsohn ME, et al. Impaired vasodilation of forearm resistance vessels in hypercholesterolemic humans.J Clin Invest 1990;86:228–234.Google Scholar
  4. 4.
    Chin HP, Liu CR, Blankenhorn DH. Very early aortic responses during atherosclerosis induction in rabbits: Measurement by duplex ultrasound.Atherosclerosis 1990;83:1–8.Google Scholar
  5. 5.
    Sellke FW, Armstrong ML, Harrison DG. Endothelium-dependent vascular relaxation is abnormal in the coronary microcirculation of atherosclerotic primates.Circulation 1990;81:1586–1593.Google Scholar
  6. 6.
    Vallance P, Collier J, Moncada S. Effect of endothelium derived nitric oxide on peripheral arteriolar tone in man.Lancet 1989;2:997–1000.Google Scholar
  7. 7.
    Furghott RF, Vanhoutte PM. Endothelium-derived relaxing and contracting factors.FASEB J 1989;3:2007–2018.Google Scholar
  8. 8.
    Vane JR, Anggard EE, Botting RM. Regulatory functions of the vascular endothelium.N Engl J Med 1990;323:27–36.Google Scholar
  9. 9.
    Wines PA, Schmitz JM, Pfister SL, et al. Augmented vasoconstrictor responses to serotonin precede development of atherosclerosis in aorta of WHHL rabbit.Arteriosclerosis 1989;9:195–202.Google Scholar
  10. 10.
    Osborne JA, Siegman MJ, Sedar AW, Mooers SU, Lefer AM. Lack of endothelium-dependent relaxation in coronary resistance arteries of cholesterol-fed rabbits.Am J Physiol 1989;256:C591-C597.Google Scholar
  11. 11.
    Shimokawa H, Vanhoutte PM. Impaired endothelium dependent relaxation to aggregating platelets and related vasoactive substances in porcine coronary arteries in hypercholesterolemia and atherosclerosis.Circ Res 1989;64:900–914.Google Scholar
  12. 12.
    Andrews HF, Bruckdorfer KR, Dunn RC, Jacobs M. Low-density lipoproteins inhibit endothelium-dependent relaxation in rabbit aorta.Nature 1987;327:237–239.Google Scholar
  13. 13.
    Tomita T, Ezaki M, Miwa M, Nakamura K, Inoue Y. Rapid and reversible inhibition by low density lipoprotein of endothelium-dependent relaxation to hemostatic substances in porcine coronary arteries.Circ Res 1990;66:18–27.Google Scholar
  14. 14.
    Takahashi M, Yui Y, Yasumoto H, et al. Lipoproteins are inhibitors of endothelium dependent relaxation of rabbit aorta.Am J Physiol 1990;258:H1-H8.Google Scholar
  15. 15.
    Kugiyama K, Kerns SA, Morrisett JD, Roberts R, Henry PD. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified Low density lipoproteins.Nature 1990;344:160–162.Google Scholar
  16. 16.
    Simon BC, Cunningham LD, Cohen RA. Oxidized low density lipoproteins cause contraction and inhibit endothelium-dependent relaxation in the pig coronary artery.J Clin Invest 1990;86:75–79.Google Scholar
  17. 17.
    Tanner FC, Noll G, Boulanger CM, Luscher TF. Oxidized Low density lipoproteins inhibit relaxations of porcine coronary arteries.Circulation 1991;83:2012–2020.Google Scholar
  18. 18.
    Galle J, Mulsch A, Busse R, Bassenge E. Effects of native and oxidized low density lipoproteins on formation and inactivation of endothelium-derived relaxing factor.Arterioscl Thromb 1991;11:198–203.Google Scholar
  19. 19.
    Cooke JP, Andon NA, Girerd XJ, Hirsch AT, Creager MA. Arginine restores cholinergic relaxation of hypercholesterolemic rabbit thoracic aorta.Circulation 1991;83:1057–1062.Google Scholar
  20. 20.
    Rubanyi GM. Reversal of hypercholesterolemia-induced endothelial dysfunction by L-arginine.Circulation 1991;83:1118–1120.Google Scholar
  21. 21.
    Vita JA, Treasure CB, Nabel EG, et al. Coronary vasomotor response to acethylcholine relates to risk factors for coronary artery disease.Circulation 1990;81:491–497.Google Scholar
  22. 22.
    Henry PD. Hyperlipidemic arterial disfunction.Circulation 1990;81:697–699.Google Scholar
  23. 23.
    Zeiher AM, Drexler H, Wollschloger H, Just H. Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis.Circulation 1991;83:391–401.Google Scholar
  24. 24.
    Harrison DG, Armstrong ML, Freiman PC, Heistad DD. Restoration of endothelium-dependent relaxation by dietary treatment of atherosclerosis.J Clin Invest 1987;80:1808–1811.Google Scholar
  25. 25.
    Rubba P, Iannuzzi A, Postiglione A, et al. Hemodynamic changes in the peripheral circulation after repeat low density lipoprotein apheresis in familial hypercholesterolemia.Circulation 1990;81:610–616.Google Scholar
  26. 26.
    Loscalzo J. Regression of coronary atherosclerosis.N Engl J Med 1990;323:1337–1339.Google Scholar
  27. 27.
    Levy RI, Brensike JF, Epstein SE, et al. The influence of changes in lipid values induced by cholestyramine and diet on progression of coronary artery disease: Results of the NHLBI Type II Coronary Intervention Study.Circulation 1984;69:325–337.Google Scholar
  28. 28.
    Blankenhorn DH, Nessim SA, Johnson RL, Sanmarco ME, Azen SP, Cashin-Hemphill L. Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts.JAMA 1987;257:3233–3240.Google Scholar
  29. 29.
    Cashin-Hemphill L, Mack WJ, Pogoda JM, Sanmarco ME, Azen SP, Blankenhorn DH. Beneficial effects of colestipolniacin on coronary atherosclerosis. A 4-year follow-up.JAMA 1990;264:3013–3017.Google Scholar
  30. 30.
    Brown G, Albers JJ, Fisher LD, et al. Regression of coronary artery disease as a result of intensive lipid lowering therapy in men with high levels of apolipoprotein B.N Engl J Med 1990;323:1289–1298.Google Scholar
  31. 31.
    Kane JP, Malloy MJ, Ports TA, Phillips NR, Diehl JC, Havel RJ. Regression of coronary atherosclerosis during treatment of familial hypercholesterolemia with combined drug regimens.JAMA 1990;264:3007–3012.Google Scholar
  32. 32.
    Buchwald H, Varco RL, Matts JP, and the POSCH Group. Effect of partial ileal by-pass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia.N Engl J Med 1990;323:946–955.Google Scholar
  33. 33.
    Ornish D, Brown SE, Scherwitz LW, et al. Can lifestyle changes reverse coronary heart disease?Lancet 1990;2:129–133.Google Scholar
  34. 34.
    Watts GF, Lewis B, Brunt JNH, et al. Effects on coronary artery disease of lipid-lowering diet, or diet plus cholestyramine, in the St. Thomas' Atherosclerosis Regression Study (STARS).Lancet 1992;1:563–569.Google Scholar
  35. 35.
    Duffield RGT, Lewis B, Miller NE, Jamieson CW, Brunt JN, Colchester AC. Treatment of hyperlipidemia retards progression of symptomatic femoral atherosclerosis: A randomized controlled trial.Lancet 1983;2:639–642.Google Scholar
  36. 36.
    Olsson AG, Ruhn G, Erikson U. The effect of serum lipid regulation on the development of femoral atherosclerosis in hyperlipidemia: A non-randomized controlled study.J Intern Med 1990;227:381–390.Google Scholar
  37. 37.
    Olsson AG. Regression of femoral atherosclerosis.Circulation 1991;83:698–700.Google Scholar
  38. 38.
    Blankenhorn DH, Azen SP, Crawford DW, et al. Effects of colestipol niacin therapy on human femoral atherosclerosis.Circulation 1991;83:438–447.Google Scholar
  39. 39.
    de Feyter P, Serruys PW, Davies MJ, Richardson P, Lubsen J, Oliver MF. Quantitative coronary angiography to measure progression and regression of coronary atherosclerosis.Circulation 1991;84:412–423.Google Scholar
  40. 40.
    Oliver MF. Clinical perspectives of trials of regression of coronary atherosclerosis.Cardiovasc Risk Factors 1992;2:234–238.Google Scholar
  41. 41.
    Zwiebel WJ. Duplex carotid sonography. In: Zwiebel WJ, ed.Introduction to Vascular Ultrasonography Orlando: Grune & Stratton, 1986:139–170.Google Scholar
  42. 42.
    Comerota AJ, Cranley JJ, Hayden WG. Ultrasonic imaging for carotid occlusive disease. In: Bernstein EF, ed.Non-invasive Diagnostic Techniques in Vascular Disease. St. Louis: Mosby, 1985:384–396.Google Scholar
  43. 43.
    Ricotta JJ, Bryan FA, Bond MG, et al. Multicenter validation study of real-time (B-mode) ultrasound, arteriography, and pathologic examination.J Vasc Surg 1987;6:512–520.Google Scholar
  44. 44.
    O'Leary DH, Bryan FA, Goodison MW, et al. Measurement variability of carotid atherosclerosis: Real-time (B-mode) ultrasonography and angiography.Stroke 1987;18:1011–1017.Google Scholar
  45. 45.
    Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis G. Compensatory enlargement of human atherosclerotic coronary arteries.N Engl J Med 1987;316:1371–1375.Google Scholar
  46. 46.
    Zarins CK, Weisenberg E, Kolettis G, Stankunavicius R, Glagov S. Differential enlargement of artery segments in response to enlarging atherosclerotic plaques.J Vasc Surg 1988;7:386–394Google Scholar
  47. 47.
    Fuster V, Stein B, Ambrose JA, Badimon L, Badimon JJ, Chesebro JH. Atherosclerotic plaque rupture and thrombosis.Circulation 1990;82(Suppl II):II47-II59.Google Scholar
  48. 48.
    Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes (first of two parts).N Engl J Med 1992;326:242–250.Google Scholar
  49. 49.
    Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes (second of two parts).N Engl J Med 1992;326:310–318.Google Scholar
  50. 50.
    Crouse JR, Harpold GH, Kahl FR, Toole JF, McKinney WM. Evaluation of a scoring system for extracranial carotid atherosclerosis extent with B-mode ultrasound.Stroke 1986;17:270–275.Google Scholar
  51. 51.
    Craven TE, Ryu JE, Espeland MA, et al. Evaluation of the associations between carotid artery atherosclerosis and coronary artery stenosis. A case-control study.Circulation 1990;82:1230–1242.Google Scholar
  52. 52.
    Margitic SE, Bond MG, Crouse JR, Furberg CD, Probstfield JL. Progression and regression of carotid atherosclerosis in clinical trials.Arterioscler Thromb 1991;11:443–451.Google Scholar
  53. 53.
    The Coronary Drug Project Research Group. Clofibrate and niacin in coronary heart disease.JAMA 1975;231:360–380.Google Scholar
  54. 54.
    Canner PL, Berge KG, Wenger NK, et al. Fifteen year mortality in coronary drug project patients: Long-term benefit with niacin.J Am Coll Cardiol 1986;8:1245–1255.Google Scholar
  55. 55.
    Carlson LA, Rosenhamer G. Reduction of mortality in the Stockholm Ischaemic Heart Secondary Prevention Study by combined treatment with clofibrate and nicotinic acid.Acta Med Scand 1988;223:405–418.Google Scholar
  56. 56.
    Olsson AG, Holmquist L, Walldius G, et al. Serum apolipoproteins, lipoproteins and fatty acids in relation to ischaemic heart disease in northern and southern European males.Acta Med Scand 1988;223:3–13.Google Scholar
  57. 57.
    Secondary prevention of coronary disease with lipid lowering drugs.Lancet 1989;1:473–474.Google Scholar
  58. 58.
    Rossouw JE, Lewis B, Rifkind BM. The value of lowering cholesterol after myocardial infarction.N Engl J Med 1990;323:1112–1119.Google Scholar
  59. 59.
    Roussow JE, Lewis B, Rifkind B. Mortality experience in cholesterol reduction trials.N Engl J Med 1991;324:923.Google Scholar
  60. 60.
    Holme I. An analysis of randomized trials evaluating the effect of cholesterol reduction on total mortality and coronary heart disease incidence.Circulation 1990;82:1916–1924.Google Scholar
  61. 61.
    nLa Rosa JC, Cleeman JI. Cholesterol lowering as a treatment for established coronary artery disease.Circulation 1992;85:1229–1235.Google Scholar
  62. 62.
    Zilversmit DB. Atherogenesis: A postprandial phenomenon.Circulation 1979;60:473–485.Google Scholar
  63. 63.
    Groot PHE, Van Stiphout WAHJ, Krauss XH, et al. Postprandial lipoprotein metabolism in normolipidemic men with and without coronary artery disease.Arterioscler Thromb 1991;11:653–662.Google Scholar
  64. 64.
    Hamsten A, Wiman B, De Faire U, Blomback M. Increased plasma levels of a rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction.N Engl J Med 1985;313:1557–1563.Google Scholar
  65. 65.
    Miller GJ, Martin JC, Mitropulos KA, et al. Plasma factor VII is activated by postprandial triglyceridaemia, irrespective of dietary fat composition.Atherosclerosis 1991;86:163–171.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Paolo Rubba
    • 1
  • Paolo Pauciullo
    • 1
  • Mario Mancini
    • 1
  1. 1.Institute of Internal Medicine and Metabolic Diseases, 2nd Medical SchoolUniversita “Federico II”NapoliItaly

Personalised recommendations