pure and applied geophysics

, Volume 134, Issue 3, pp 427–450 | Cite as

Seismicity induced by gas production: II. Lithology correlated events, induced stresses and deformation

  • Jean-Robert Grasso
  • Bruno Feignier
Article

Abstract

A 3D relocation technique permits precise locations of induced earthquakes. Geostatistical processing using the data of 87 boreholes provides the basis of a precise 3D structure, with a dome geometry. Conventional laboratory mechanical tests performed on deep rock samples (1000 m to 5000 m) define the rock properties at depths similar to those of the seismic events (1<ML<4.2) that range from 1 to 7 km.

In the studied period, most (85%), of the events were located above the gas reservoir, with very few located in the reservoir itself. Because the production parameters (50 MPa depletion of the gas pressure reservoir) are homogeneous throughout the gas field, the lateral inhomogeneity of the seismic rupture locations are a consequence of variations in the rheological response of the dome to the deformation induced by gas production.

Here a ratio of two is found between the elastic modulus of the seismic rock matrix and the elastic modulus of the aseismic rock matrix. The contrast in strength is at least as great, if not greater. Repeated measured surface deformations involve the whole structure. Spatial and temporal deformations indicate that aseismic deformation is quantitatively the main process of this structural deformation. The heterogeneous stress pattern inferred fromP-axes of induced earthquakes disagrees with the tectonic regional stress field. The radial distribution ofP-axes towards the gas reservoir probably reflects the production induced deformation. The inferred deformation of the dome occurs in response to weak induced stresses.

Key words

Induced seismicity gas production rock mechanic regional stress field Pyrenees 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, E. M. (1936), Proc. Roy. Soc. Eding.56, 128.Google Scholar
  2. Barthe, A., andReverdy, X. (1958),Le recif de Lacq, R.G. 325, a report to the SNEA(P) company.Google Scholar
  3. Bradley, W. B. (1978),Borehole Failure near Salt Domes, SPE 7503 presented at the 53rd Annual Fall meeting of the SPE, Houston.Google Scholar
  4. Célérier, B. (1988),How Much Does Slip on a Reactivated Fault Plane Constrain the Stress Tensor, Tectonics7, 4182–4198.Google Scholar
  5. Daignières, M., Gallart, J., Banda, E., andHirn, A. (1982),Implications of the Seismic Structure for Orogenic Evolution of the Pyrenean Range, Earth and Planet. Sci. Lett.57, 88–100.Google Scholar
  6. Fabre, D., Grasso, J. R., andOrengo, Y. (1989),Analysis of the Failure Behaviour of Deep Rock Core Samples during Triaxial Testing: Application to Field Conditions, submitted to Int. Journ. Rocks. Mech. and Min. Sci. and Geomech. Abs.Google Scholar
  7. Feignier, B., andGrasso, J. R. (1990),Seismicity and Deformation Induced by Gas Production I. Correlation of Focal Mechanisms and Dome Structure, Pure Appl. Geophys.134, 405–426.Google Scholar
  8. Feignier, B. (1989),Comportement à la source de séismes induits: caractérisation géomécanique, Ph.D. Thesis, University of Grenoble.Google Scholar
  9. Foulger, G. R., Hengill triple junction, SW Iceland (1988),Tectonic Structure and the Spatial and Temporal Distribution of Local Earthquakes, J. Geophys. Res.93, 13493–13506.Google Scholar
  10. Fung, Y. C.,Foundations of Solid Mechanics (Prentice Hall, New Jersey 1965).Google Scholar
  11. Gagnepain-Beyneix, J., Haessler, H., andModiano, T. (1982),The Pyrenean Earthquake of February 29, 1980: An Example of Complex Faulting, Tectonophysics85, 273–290.Google Scholar
  12. Gagnepain-Beyneix, J. (1987),Etude expérimentale des tremblements de terre, Exemple de la région d'Arette (France), Thèse d'Université, Université de Paris, 210 pp.Google Scholar
  13. Gallart, J., Daignières, M., Gagnepain-Beyneix, J., andHirn, A. (1985),Relationship Between Deep Structure and Seismicity in the Western Pyrenees, Annales Geophysicae,3, 239–248.Google Scholar
  14. Grasso, J. R., Vialon, P., andFabre, D. (1985),Etude géomécanique de la sismicité dans la région de Lacq, Report to the SNEA(P) Company, 400 pp.Google Scholar
  15. Grasso, J. R., andWittlinger, G. (1990),Ten Years of Seismic Monitoring over a Gas Field Area, Bull. Seismol. Soc. Am.80, 450–473.Google Scholar
  16. Gratier, J. P. (1984),La déformation des roches par dissolution-cristallisation, Thèse de Doctorat d'Etat. U, de Grenoble, 316 p.Google Scholar
  17. Guénot, A.,Borehole breakouts and stress field. InProc. Int. Workshop on Forced Fluid Flow Through Strong Fractured Rock Masses, 1 (CNRS, Paris 1987) pp. 219–233.Google Scholar
  18. Hoang Van, T., andRouland, D. (1971),Mecanisme au foyer du séisme d'Arette (P.A.), C.R.A.S.272, 3249–3251.Google Scholar
  19. Jaeger, J. C.,Elasticity, Fracture and Flow with Engineering and Geological Applications, (Science paperbacks, Methuen's Monographs on Physical Subjects, 1969).Google Scholar
  20. Maury, V., andSauzay, J. M. (1987),Borehole Instability: Case History Rock Mechanics Approach and Results, Proc. SPE/IADC Conf. Paper; SPE/IACC 16051, New Orleans.Google Scholar
  21. McGarr, A. (1988),On the State of Stress in Absence of Applied Tectonic Forces, J. Geophys. Res.93, 13609–13617.Google Scholar
  22. McGarr, A., Spottiswoode, M., andGay, N. C. (1975),Relationship of Mine Tremors to Induced Stresses and to Rock Properties in the Focal Region, Bull. Seismol. Soc. Am.65(4), 981–993.Google Scholar
  23. McKenzie, D. (1972),Active Tectonics of the Mediterranean Region, Geophys. J. R. Astr. Soc.30, 109–185.Google Scholar
  24. Mereu, R. F., Brunet, J., Morrissey, K., Price, B. andYapp, A. (1986),A Study of the Microearthquakes of the Globes Oil Field Area of Southwestern Ontario, Bull. Seismol. Soc. Am.76, 1215–1223.Google Scholar
  25. Modiano, T. (1980),Sismotectonique des Pyrénées Occidentales. Etude détaillée du contenu spectral des ondes de volume dans la région focale, Thèse 3ème cycle, Grenoble.Google Scholar
  26. Muller, O. H., andPollard, D. D. (1977),The Stress State near Spanish Peaks, Colorado, Determined from a Dyke Pattern, Pure Appl. Geophys.115, 69–86.Google Scholar
  27. Nicholson, C., Roeloffs, E., andWesson, R. L. (1988),The Northeastern Ohio Earthquake of 31 January 1986: Was It Induced?, Bull Seismol. Soc. Am.78, 188–217.Google Scholar
  28. Ode, H. (1957),Mechanical Analysis of the Dyke Pattern of the Spanish Peaks Area, Colorado, Bull. Geol. Soc. Am.68, 567–576.Google Scholar
  29. Pennington, D. W., Davis, D. D., Carlson, S. M., Dupree, J., andEwing, T. E. (1986),The Evolution of Seismic Barriers and Asperities Caused by the Depressuring of Fault Planes in Oil and Gas Fields of South Texas, Bull. Seismol. Soc. Am.76, 939–948.Google Scholar
  30. Piper, J. D. A., andGibson, I. L. (1972),Stress Control of Processes at Extensional Plate Margins, Nature238, 83–86.Google Scholar
  31. Philip, H. (1983),La tectonique actuelle et récente dans le domaine méditerranéen et ses bordures. Ses relations avec la sismicité, Thèse de Doctorat d'Etat, U. de Montpellier, 240 pp.Google Scholar
  32. Roeloffs, E. A. (1988),Fault Stability Changes Induced Beneath a Reservoir with a Cyclic Variation in Water Level, J. Geophys. Res.93, 2107–2124.Google Scholar
  33. Rothe, G. H., andLui, C. Y. (1983),Possibility of Induced Seismicity in the Vicinity of the Sleepy Hollow Oil Field, Southwestern Nebraska, Bull. Seismol. Soc. Am.73, 1357–1367.Google Scholar
  34. Ryan, M. P., Blevins, J. Y. K., Okamura, A. T., andKoyanagi, R. (1983),Magma Reservoir Subsidence Mechanics: Theoretical Summary and Application to Kileaua Volcano, Hawaii, J. Geophys. Res.88, 4147–4181.Google Scholar
  35. Scheidegger, A. E. (1964),The Tectonic Stress and Tectonic Motion Direction in Europe and Western Asia as Calculated form Earthquake Fault Plane Solutions, Bull. Seismol. Soc. Am.54, 1519–1528.Google Scholar
  36. Segall, P. (1985),Stress and Subsidence Resulting from Subsurface Fluid Withdrawal in the Epicentral Region of 1983 Coalinga Earthquake, J. Geophys. Res.90, 9801–9816.Google Scholar
  37. Segall, P. (1989),Earthquake Triggered by Fluid Extraction, Geology17, 942–946.Google Scholar
  38. Simpson, D. W. (1986),Triggered Earthquakes, Ann. Rev. Earth. Planet Sci.14, 21–42.Google Scholar
  39. Tapponnier, P. (1977),Evolution tectonique du système alpin en Méditerranée: poinçonnement et écrasement rigide-plastique, Bull. Soc. Geol. Fr.58, 399–4165.Google Scholar
  40. Teufel, L. (1989),On Recent in situ Stress Measurements in EKOFISK Gas Field, Proc. Int. Symp., Rock at Great Depth, PAU, 1989, 08, 28–31.Google Scholar
  41. Wetmiller, R. J. (1986),Earthquakes near Rocky Mountain House, Alberta, and their Relationship to Gas Production Facilities, Can. J. Earth. Sci.23, 172–181.Google Scholar
  42. Wittlinger, G. (1980),Etude de la sismicité en champ proche par un réseau sismologique à faible ouverture: application au Frioul (Italie) et au gisement de Lacq (France), Thèse de Doctorat d'Etat, U. de Strasbourg, 261 pp.Google Scholar
  43. Yerkes, R. F., andCastle, R. O. (1976),Seismicity and Faulting Attributable to Fluid Extraction, Eng. Geol.10, 151–167.Google Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • Jean-Robert Grasso
    • 1
  • Bruno Feignier
    • 1
  1. 1.Observatoire de Grenoble, Laboratoire de Geophysique Interne et TectonophysiqueIRIGMGrenobleFrance

Personalised recommendations