pure and applied geophysics

, Volume 136, Issue 4, pp 529–560 | Cite as

Complete synthetic seismograms for high-frequency multimodeSH-waves

  • N. Florsch
  • D. Fäh
  • P. Suhadolc
  • G. F. Panza
Article

Abstract

We present an efficient scheme to compute high-frequency seismograms (up to 10 Hz) forSH-waves in a horizontally stratified medium with the mode summation method. The formalism which permits the computation of eigenvalues, eigenfunctions and related integral quantities is discussed in detail. Anelasticity is included in the model by using the variational method. Phase velocity, group velocity, energy integral and attenuation spectra of a structure enable the computation of complete strong motion seismograms, which are the basic tool for the interpretation of near-source broad-band data.

Different examples computed for continental structures are discussed, where one example is the comparison between the observed transversal displacement recorded at station IVC for the November 4, Brawley 1976 earthquake and synthetic signals. In the case of a magnitudeML=5.7 earthquake in the Friuli seismic area we apply the mode summation method to infer from waveform modeling of all three components of motion of observed data some characteristics of the source.

Key words

Modal summation broad band Love waves anelasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki, K., andRichards, P. G.,Quantitative Seismology (Freeman and Co., San Francisco, 1980).Google Scholar
  2. Ben-Menahem, A. (1961),Radiation of Seismic Surface Waves from Finite Moving Sources, Bull. Seismol. Soc. Am.51, 401–435.Google Scholar
  3. Ben-Menahem, A., andHarkrider, D. G. (1964),Radiation Patterns of Seismic Surface Waves from Buried Dipolar Point Sources in a Flat Stratified Earth, J. Geophys. Res.69, 2605–2620.Google Scholar
  4. Campillo, M., Bard, P.-Y., Nicollin, F., andSanchez-Sesma, F. (1988),The Mexico Earthquake of Septermber 19, 1985—The Incident Wavefield in Mexico City during the Great Michoacan Earthquake and its Interaction with the Deep Basin, Earthquake Spectra 4 (3), 591–608.Google Scholar
  5. CNEN-ENEL (1977),Uncorrected Accelerograms. Accelerograms from the Friuli, Italy, Earthquake of May 6, 1976 and Aftershocks: Part 3, Rome, Italy, November 1977.Google Scholar
  6. Day, S. M., McLaughlin, K. L., Skoller, B., andStevens, J. L. (1989),Potential Errors in Locked Mode Synthetics for Anelastic Earth Models, Geophys. Res. Lett.16., 203–206.Google Scholar
  7. Fäh, D., Suhadolc, P., andPanza, G. F. (1990),Estimation of Strong Ground Motion in Laterally Heterogeneous Media, Proc. 9-th European Conf. on Earthquake Eng., Sept. 1990, Moscow, USSR.Google Scholar
  8. Futterman, W. I. (1962),Dispersive Body Waves, J. Geophys. Res.67, 5279–5291.Google Scholar
  9. Harkrider, D. G. (1970),Surface Waves in Multilayered Elastic Media. Part II. Higher Mode Spectra and Spectral Ratios from Point Sources in a Plane Layered Earth Model, Bull. Seismol. Soc. Am.60, 1937–1987.Google Scholar
  10. Harvey, D. J. (1981),Seismograms Synthesis Using Normal Mode Superposition: The Locked Mode Approximation, Geophys. J. R. Astr. Soc.66, 37–69.Google Scholar
  11. Haskell, N. A. (1953),The Dispersion of Surface Waves in Multilayered Media, Bull. Seismol. Soc. Am.43, 17–34.Google Scholar
  12. Heaton, T. H., andHelmberger, D. V. (1978),Predictability of Strong Ground Motion in the Imperial Valley: Modeling the M4.9, November 4, 1976 Brawley Earthquake, Bull. Seismol. Soc. Am.68, 31–48.Google Scholar
  13. Knopoff, L. (1964),A Matrix Method for Elastic Wave Problems, Bull. Seismol. Soc. Am.54, 431–438.Google Scholar
  14. Knopoff, L., Schwab, F. andKausel, E. (1973),Interpretation of Lg, Geophys. J. R. Astr. Soc.33, 389–404.Google Scholar
  15. Mao, W. J., andSuhadolc, P. (1990),Ray-tracing, Inversion of Travel Times and Waveform Modelling of Strong Motion Data: Application to the Friuli Seismic Area NE Italy Geophys. J. Int. Submitted.Google Scholar
  16. Mao, W., Suhadolc, P., Fäh, D., andPanza, G. F. (1990),An Example of Interpretation Strong Motion Data by Source Complexity, 18th International Conference on Mathematical Geophysics, Jerusalem, Israel (17–22 June 1990).Google Scholar
  17. Panza, G. F., Schwab, F. A., andKnopoff, L. (1973),Multimode Surface Waves for Selected Focal Mechanisms. I. Dip-slip Sources on a Vertical Fault Plane, Geophys. J. R. Astr. Soc.34, 265–278.Google Scholar
  18. Panza, G. F. andCalcagnile, G. (1975),Lg, Li and Rg from Rayleigh Modes, Geophys. J. R. Astr. Soc.40, 475–487.Google Scholar
  19. Panza, G. F. (1985),Synthetic Seismograms: The Rayleigh Waves Modal Summation, J. Geophys.58, 125–145.Google Scholar
  20. Panza, G. F., andSuhadolc, P. Complete strong motion synthetics. InSeismic Strong Motion Synthetics (Bolt, B. A., ed.) (Academic Press, Orlando 1987), Computational Techniques4, 153–204.Google Scholar
  21. Schwab, F. (1970),Surface-wave Dispersion Computations: Knopoffs Method Bull Seismol. Soc. Am.60 1491–1520.Google Scholar
  22. Schwab, F., andKnopoff, L. (1971),Surface Waves on Multilayered Anelastic Media, Bull. Seismol. Soc. Am.61, 893–912.Google Scholar
  23. Schwab, F., andKnopoff, L.,Fast surface wave and free mode computations, InMethods in Computational Physics, vol. 11 (Bolt, B. A., ed.), (New York, Academic Press 1972) pp. 86–180.Google Scholar
  24. Schwab, F., andKnopoff, L. (1973),Love Waves and Torsional Free Modes of a Multilayered Anelastic Sphere, Bull. Seismol. Soc. Am.63, 1103–1117.Google Scholar
  25. Schwab, F., Nakanishi, K., Cuscito, M., Panza, G. F., Liang, G., andFrez, J. (1984),Surface Wave Computations and the Synthesis of Theoretical Seismograms at High Frequencies, Bull. Seismol. Soc. Am.74, 1555–1578.Google Scholar
  26. Schwab, F. (1988),Mechanism of Anelasticity, Geophys. J.95, 261–284.Google Scholar
  27. Slejko, D., andRenner G. (1984), In “Finalità ed Esperienze della Rete Sismometrica del Friuli-Venezia Giulia”, pp. 75–91. Regione Autonoma Friuli-Venezia Giulia, Trieste.Google Scholar
  28. Suhadolc, P., Cernobori L., Pazzi, G., andPanza, G. F.,Synthetic isoseismal: Applications to Italian earthquakes, Seismic Hazard in Mediterranean Regions, In. J. Bonninet al. (eds.) (Kluwer Academic Press 1988) pp. 205–228.Google Scholar
  29. Swanger, H. J., andBoore, D. M. (1978),Simulation of Strong-Motion Displacements Using Surface-wave Modal Superposition, Bull. Seismol. Soc. Am.68, 907–922.Google Scholar
  30. Takeuchi, H., andSaito, M.,Seismic surface waves, InMethods in Computational Physics, Vol. 11, (Bolt, B. A., ed.) (New York, Academic Press 1972) pp. 217–295.Google Scholar
  31. Thomson, W. T. (1950),Transmission of Elastic Waves through a Stratified Solid Medium, J. Appl. Phys.21, 89–93.Google Scholar
  32. Vaccari, F., Gregersen, S., Furlan, M., andPanza, G. F. (1989),Synthetic Seismograms in Laterally Heterogeneous Anelastic Media by Modal Summation of P-SW-waves, Geophys. J. Int.99, 285–295.Google Scholar

Copyright information

© Birkhäuser Verlag 1991

Authors and Affiliations

  • N. Florsch
    • 1
  • D. Fäh
    • 1
  • P. Suhadolc
    • 1
  • G. F. Panza
    • 1
  1. 1.Institute of Geodesy and GeophysicsUniversity of TriesteTriesteItaly

Personalised recommendations