Applied Categorical Structures

, Volume 3, Issue 3, pp 279–301

Quantaloids, enriched categories and automata theory

  • Kimmo I. Rosenthal
Article

Abstract

This article is intended to be an survey article outlining how the theory of quantaloids and categories enriched in them provides an effective means of analyzing both automata and tree automata. The emphasis is on the unification of concepts and how categorical methods provide insight into various calculations and theorems, both illuminating the original presentation as well as yielding conceptually simpler proofs. Proofs will be omitted and the emphasis is on providing the reader (even a relatively inexperienced one) with an understanding of the basic constructions and results.

Mathematics subject classifications (1991)

18B35 18D20 18B20 18F20 

Key words

quantaloid nucleus Q-category Q-functor Q-bimodule relational presheaf automata tree automata 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramsky S. and Vickers S.: Quantales, observational logic, and process semantics,Mathematical Structures in Computer Science,3(2) (1993), 161–228.Google Scholar
  2. 2.
    Betti R.: Automi e categorie chiuse,Boll. Un. Mat. Italiana 5 (1980), 44–88.Google Scholar
  3. 3.
    Betti R. and Carboni A.: Notion of topology for bicategories,Cah. de Top. et Geom. Diff. Cat. XXIV(1) (1983), 19–22.Google Scholar
  4. 4.
    Betti R. and Carboni A.: Cauchy completion and the associated sheaf,Cah. de Top. et Geom. Diff. XXIII(3) (1982), 243–256.Google Scholar
  5. 5.
    Betti R. and Kasangian S.: Tree automata and enriched category theory,Rend. Inst. Mat. Univ. Trieste 17, No. 1–2 (1985), 71–78.Google Scholar
  6. 6.
    Betti R., Carboni A., Street R., and Walters R. F. C.: Variation through enrichment,J. Pure Appl. Alg. 29 (1983), 109–127.Google Scholar
  7. 7.
    Carboni A. and Street R.: 1986, Order ideals in categories,Pac. J. of Math. 124(2) (1986), 275–288.Google Scholar
  8. 8.
    Carboni A. and Walters R. F. C.: Cartesian bicategories I,J. Pure Appl. Alg. 45 (1987), 127–141.Google Scholar
  9. 9.
    Eilenberg S.:Automata, Machines and Languages, Vol. A, Academic Press, New York, 1976.Google Scholar
  10. 10.
    Gecseg F. and Steinby M.:Tree Automata, Akademiai Kiado, Budapest, 1986.Google Scholar
  11. 11.
    Ghilardhi S. and Meloni G. C.: Relational and topological semantics for temporal and modal predicative logic, inProc. 1990 SILFS Conference, to appear.Google Scholar
  12. 12.
    Ghilardhi S. and Meloni G. C.: Modal logics withn-ary connectives,Zeitschr. f. Math. Logik und Grundlagen der Math. 36 (1990), 193–215.Google Scholar
  13. 13.
    Johnstone P. T.:Stone Spaces, Cambridge Univ. Press, 1982.Google Scholar
  14. 14.
    Kasangian S., Kelly G. M., and Rossi F.: Cofibrations and the realization of non-deterministic automata,Cah. de Top. et Geom. Diff. Cat. XXIV(1) (1983), 23–46.Google Scholar
  15. 15.
    Kasangian S. and Rosebrugh R.: Decompositions of automata and enriched category theory,Cah. de Top. et Geom. Diff. Cat. XXVII(4) (1986), 137–143.Google Scholar
  16. 16.
    Kasangian S. and Rosebrugh R.: Glueing enriched modules and the composition of automata,Cah. de Geom. et Diff. Cat. XXXI(4) (1990), 283–290.Google Scholar
  17. 17.
    Kelly G. M.:Basic Concepts of Enriched Category Theory, Cambridge. Univ. Press, 1982.Google Scholar
  18. 18.
    Lawvere F. W.: Functorial semantics of algebraic theories,Proc. Nat. Acad. Sci. 50 (1963), 869–872.Google Scholar
  19. 19.
    Lawvere F. W.: Metric spaces, generalized logic, and closed categories,Rend. Sem. Mat. e Fis. Milano (1973), 135–166.Google Scholar
  20. 20.
    Niefield S. B. and Rosenthal K. I.: Constructing locales from quantales,Math. Proc. Camb. Phil. Soc. 104 (1988), 215–234.Google Scholar
  21. 21.
    Pin J. E.: 1986,Varieties of Formal Languages, Plenum Press, New York, 1986.Google Scholar
  22. 22.
    Pitts A.: Applications of sup-lattice enriched category theory to sheaf theory,Proc. London Math. Soc. 57(3) (1988), 433–480.Google Scholar
  23. 23.
    Rosenthal K. I.:Quantales and Their Applications, Pitman Research Notes in Math. No. 234, Longman, Scientific, and Technical, 1990.Google Scholar
  24. 24.
    Rosenthal K. I.: Free quantaloids,J. Pure Appl. Alg. 72(1) (1991), 67–82.Google Scholar
  25. 25.
    Rosenthal K. I.: Girard quantaloids,Math. Structures in Computer Science 2(1) (1992), 93–108.Google Scholar
  26. 26.
    Rosenthal K. I.: Quantaloidal nuclei, the syntactic congruence and tree automata,J. Pure Appl. Alg. 77 (1992), 189–205.Google Scholar
  27. 27.
    Rosenthal K. I.: A note on categories enriched in quantaloids and modal and temporal logic,Cahiers de Top. et Geom. Diff. Cat. XXXIV(4) (1994), 267–277.Google Scholar
  28. 28.
    Rosenthal K. I.: A categorical look at context-free languages and tree automata,Math. Structures in Computer Science 4(3) (1994), 287–294.Google Scholar
  29. 29.
    Rosenthal K. I.: *-autonomous categories of bimodules,J. Pure and Appl. Alg. 97 (1994), 189–202.Google Scholar
  30. 30.
    Street R.: Enriched categories and cohomology,Quaestiones Math. 6 (1983), 265–283.Google Scholar
  31. 31.
    Street R.: Cauchy characterization of enriched categories,Rend. Sem. Mat. e Fis. Milano (1983), 217–233.Google Scholar
  32. 32.
    Walters R. F. C.: Sheaves on sites as Cauchy complete categories,J. Pure Appl. Alg. 24 (1982), 95–102.Google Scholar
  33. 33.
    Walters R. F. C.: A note on context-free languages,J. Pure Appl. Alg. 62 (1989), 199–203.Google Scholar
  34. 34.
    Walters R. F. C.: The free category with products on a multigraph,J. Pure Appl. Alg. 62 (1989), 205–210.Google Scholar
  35. 35.
    Walters R. F. C.:Categories and Computer Science, Cambridge University Press, 1992.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Kimmo I. Rosenthal
    • 1
  1. 1.Department of MathematicsUnion CollegeSchenectadyUSA

Personalised recommendations