pure and applied geophysics

, Volume 123, Issue 5, pp 683–696 | Cite as

Qc of three component seismograms of volcanic microearthquakes at Campi Flegrei volcanic area — Southern Italy

  • E. Del Pezzo
  • G. De Natale
  • G. Scarcella
  • A. Zollo


Digital recordings of three component microearthquake codas from shallow seismic events in the volcanic region of Campi Flegrei — Southern Italy — were used with an automatic technique to calculate the attenuation factorQc (codaQ) in the hypothesis of singleS toS backscattering.

Results show the same value ofQ for each of the three components. This result is interpreted as due to isotropicS wave radiation pattern.

A check of the coda method was performed using a single station method based on simple assumptions on the direct SH wave spectrum. Single stationQ was averaged over the stations and over the earthquakes. Results show that the two methods lead to comparable results.

A frequency dependence quite different from that evaluated in active tectonic regions was found for coda attenuation, comparable to other volcanic areas throughout the world. This is interpreted as due to the presence of magma that affects anelasticity and scattering.

Key words

code waves volcanic earthquakes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aki, K. andChouet, B. (1975),Origin of coda waves: source, attenuation and scattering effects. J. Geophys. Res.80, 3322–3342.Google Scholar
  2. Aki, K. (1980),Scattering and attenuation of shear waves in the lithosphere. J. Geophys. Res.,85, 6496–6504.Google Scholar
  3. Berrino, G., Corrado, G., Luongo, G., Toro, B. (1984),Ground deformation and gravity changes accompanying the 1982 Pozzuoli uplift. Bull. Volcanol.47, 2, 187–200.Google Scholar
  4. Castellano, M., Del Pezzo, E. De Natale, G. andZollo, A. (1984),Seismic coda Q and Turbidity coefficient at Campi Flegrei Volcanic area-preliminary results. Bull. Volcanol.47, 2, 219–224.Google Scholar
  5. Chouet, B. (1976),Source, scattering and attenuation effects on high frequency seismic waves. Mass. Inst. Technology, Ph.D. Thesis.Google Scholar
  6. Chouet, B., Aki K. andTsujura, M. (1978),Regional variation of the scaling law of earthquake source spectra. B.S.S.A.68, 49–79.Google Scholar
  7. Chouet, B. (1979),Temporal variation in the attenuation of the earthquake coda near Stone Canyon, California, Geophys. Res. Lett.6, 143–146.Google Scholar
  8. Dainty, A. M. (1981),A scattering model to explain seismic Q observations in the lithosphere between 1 and 30 Hz. Geophys. Res. Lett.8, 1126–1128.Google Scholar
  9. Del Pezzo, E., Ferulano, F., Giarrusso, A. andMartini, M. (1983),Seismic coda Q and scaling law of the source spectra in the Aeolian Islands, Southern Italy. Bull. Seism. Soc. Am.,73, 97–108.Google Scholar
  10. Del Pezzo, E., Rovelli, A. andZonno, G. (1985),Seismic Q and site effects on seismograms of local earthquakes in the Aucona region (central Italy). Annales Geophysicae3, 5, 629–636.Google Scholar
  11. Del Pezzo, E. andScarcella, G. (1985),Three component coda Q in the Abruzzi-Molise region. Central Apennines. Annales Geophysicae (in press).Google Scholar
  12. Del Pezzo, E. andZollo, A. (1984),Attenuation of coda waves and turbidity coefficient in Central Italy. Bull. Seism. Soc. Am.74, 6, 2655–2659.Google Scholar
  13. De Natale, G., Zollo, A., Del Gaudio, C., Ricciardi, G. P. andMartini, M. (1984),Error analysis in hypocentral locations at Phlegrean Fields. Bull. Volcanol.47, 2, 209–218.Google Scholar
  14. Ellsworth, W. L. andKoyanagi, R. Y. (1977),Three dimensional crust and upper mantle structure of Kilauea Volcano, Hawaii. J. Geophys. Res.82, 33, 5379–5394.Google Scholar
  15. Gao, L. S., Lee, L. C., Biswas, N. N. andAki, K. (1983a),Comparison of the effects between single and multiple scattering on coda waves for local earthquakes. Bull. Seism. Soc. Am.73, 337–389.Google Scholar
  16. Gao, L. S., Lee, L. C., Biswas, N. N. andAki, K. (1983b),Effects on multiple scattering on coda waves in three dimensional medium. Pageoph,121, 1.Google Scholar
  17. Kopnichev, Y. F. (1977a),Models for the formation of the coda of the longitudinal wave (Engl. Trans.) Dokl. Akad. Nauk, SSSR,234, 13–15.Google Scholar
  18. Kopnichev, Y. F. (1977b),The role of Multiple scattering in the formation of a seismogram's tail (Engl. Trans.) Izv. Akad. Nauk, SSSR Fiz. Zemli,13, 394–398.Google Scholar
  19. Lee, W. H. K., Aki, K., Chouet, B., Johnson, P., Marks, S., Newberry, J. J. Ryall, A. S., Stewart, S. W. andTottingham, D. M. A preliminary study of coda Q in California and Nevada. Geophys. Res. Lett. (in press).Google Scholar
  20. Roecker, S. W., Tucker, B., King, J. andHatzfeld, D. (1982),Estimates of Q in central Asia as a function of frequency and depth using the coda of locally recorded earthquakes. Bull. Seism. Soc. Am.72, 129–149.Google Scholar
  21. Rovelli, A. (1982),On the frequency dependence of Q in Friuli from short period digital records. Bull. Seism. Soc. Am.72, 2369–2372.Google Scholar
  22. Rautian, T. G. andKhalturin, V. I. (1978),The use of coda for determination of the earthquake spectrum. Bull. Seism. Soc. Am.68, 923–948.Google Scholar
  23. Sato, H. (1978),Mean free path of S waves under the Kanto district, Japan. J. Phys. Earth26, 185–198.Google Scholar
  24. Sato, H. (1984),Attenuation and envelope formation of three component seismograms of small local earthquakes in randomly inhomogeneous lithosphere. J. Geophys. Res.89, b2, 1221–1241.Google Scholar
  25. Singh, S. K. andHermann, R. B. (1983),Regionalization of crustal coda Q in the continental United States. J. Geophys. Res88, 527–538.Google Scholar
  26. Tsujura, M. (1978),Spectral analysis of coda waves from local earthquakes. Bull. Earth. Res. Inst. Tokio Univ.53, 1–48.Google Scholar

Copyright information

© Birkhäuser Verlag 1985

Authors and Affiliations

  • E. Del Pezzo
    • 1
  • G. De Natale
    • 1
  • G. Scarcella
    • 1
  • A. Zollo
    • 1
  1. 1.Osservatorio VesuvianoErcolanoItaly

Personalised recommendations