Advertisement

Cardiovascular Drugs and Therapy

, Volume 9, Issue 1, pp 73–83 | Cite as

Elastic properties and Windkessel function of the human aorta

  • Gustav G. Belz
Invited Review Article

Summary

An understanding of the role of the aortic elastic properties indicates their relevance at several sites of cardiovascular function. Acting as an elastic buffering chamber behind the heart (the Windkessel function), the aorta and some of the proximal large vessels store about 50% of the left ventricular stroke volume during systole. In diastole, the elastic forces of the aortic wall forward this 50% of the volume to the peripheral circulation, thus creating a nearly continuous peripheral blood flow. This systolic-diastolic interplay represents theWindkessel function, which has an influence not only on the peripheral circulation but also on the heart, resulting in a reduction of left ventricular afterload and improvement in coronary blood flow and left ventricular relaxation. The elastic resistance (or stiffness), which the aorta sets against its systolic distention, increases with aging, with an increase in blood pressure, and with pathological changes such as atherosclerosis. This increased stiffness leads to an increase in systolic blood pressure and a decrease in diastolic blood pressure at any given mean pressure, an increase in systolic blood velocity, an increase in left ventricular afterload, and a decrease in subendocardial blood supply during diastole, and must be considered a major pathophysiological factor, for example, in systolic hypertension. The elastic properties of the aortic Windkessel can be assessed in vivo in humans in several ways, most easily by measuring the pulse wave velocity along the aorta. The higher this velocity, the higher the elastic resistance, that is, the stiffness. Other methods depend on assessment of the ratio between pulse pressure and aortic volume changes (ΔP/ΔV), which can be assessed noninvasively by ultrasonic or tomographic methods. All assessments of vessel stiffness have to take into account the direct effect of current blood pressure, and thus judgements about influences of interventions rely on an unchanged blood pressure. Alternatively, to derive the “intrinsic” stiffness of the aortic wall one has to correct for the effect of the blood pressure present. Recently reports about pharmacologic influences on the elastic properties of the aorta have emerged in the literature. Angiotensin-converting enzyme (ACE) inhibitors and nitric oxide (NO) donors seem to directly reduce the elastic resistance of the aorta. This effect, in addition to other effects on blood pressure and the peripheral circulation, could have major clinical relevance as an additional mechanism for unloading the left ventricle, improving coronary circulation, and reducing the pulsatile stress of the arterial system.

Key words

aorta arteries Windkessel function elastic properties atherosclerosis vascular compliance vascular stiffness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous. Aortic distensibility and screening for coronary atheroma.Lancet 1991;338:288.Google Scholar
  2. Asmar R, Benetos A, Brahimi M, Chaouche K, Safar M. Arterial and antihypertensive effects of nitrendipine: A double-blind comparison versus placebo.J Cardiovasc Pharmacol 1992;20:858–863.Google Scholar
  3. Athanassopoulos G, Olympios C, Foussas S, Cokkinos DV. Atheromatous plaques in the thoracic aorta are associated with decreased aortic distensibility evaluated with transesophageal echocardiography and automatic boundaries detection.J Am Coll Cardiol 1994;23:146A.Google Scholar
  4. Avolio AP, Deng FQ, Li WQ, et al. Effects of aging on arterial distensibility in populations with high and low prevalance of hypertension: Comparison between urban and rural communities in China.Circulation 1985;71:202–210.Google Scholar
  5. Bader H. Dependence of wall stress in the human thoracic aorta on age and pressure.Circ Res 1967;20:354–361.Google Scholar
  6. Bader H. Importance of the gerontology of elastic arteries in the development of essential hypertension.Clin Physiol Biochem 1983;1:36–56.Google Scholar
  7. Bergel DH. The static elastic properties of the arterial wall.J Physiol (Lond) 1961;156:445–457.Google Scholar
  8. Blankehorn DH, Kramsch DM. Reversal of atherosis and sclerosis: The two components of atherosclerosis.Circulation 1989;79:1–7.Google Scholar
  9. Böger A, Wezler K. Zur Wirkung der Muskulatur auf die Elastizität der lebenden Arterienwand.Klin Wschr 1936;559–562.Google Scholar
  10. Bramwell JC, Hill AY. Velocity of transmission of the pulsewave and elasticity of arteries.Lancet 1922;I:891–892.Google Scholar
  11. Bramwell JC, Downing AC, Hill AY. The effect of blood pressure on the extensibility of the human artery.Heart 1923;10:289–300.Google Scholar
  12. Breithaupt K, Erb K, Neumann B, Wolf GK, Belz GG. Comparison of four non-invasive techniques to measure stroke volume: Dual-beam Doppler echoaortography, electrical impedance cardiography, mechanospygmography and M-mode echocardiography of the left ventricle.Am J Noninvas Cardiol 1990;225:203–209.Google Scholar
  13. Breithaupt K, Belz GG, Sinn W. Non-invasive assessments of compliance of the aortic Windkessel in man derived from pulse pressure/storage volume ratio and from pulse wave velocity.Clin Physiol Biochem 1992a;9:18–25.Google Scholar
  14. Breithaupt K, Leschinger M, de Mey C, Belz GG. Aortic compliance in hypertension—effects of cilazapril and hydrochlorothiazide can be distinguished [letter].Blood Pressure 1992b;1:187.Google Scholar
  15. Cabrera E, Levenson J, Armentano R, Barra J, Pichel R, Simon A. Aortic pulsatile pressure and diameter response to intravenous perfusions of angiotension, norepinephrine, and epinephrine in conscious dogs.Cardiovasc Pharmacol 1988;12:643–649.Google Scholar
  16. De Cesaris R, Ranieri G, Filitti V, Adriani A. Large artery compliance in essential hypertension. Effects of calcium antagonism and β-blocking.Am J Hypertens 1992;5:624–628.Google Scholar
  17. Darne B, Girerd X, Safar M, Cambien F, Guize L. Pulsatile versus steady component of blood pressure: A cross-sectional analysis and a prospective analysis on cardiovascular mortality.Hypertension 1989;13:392–400.Google Scholar
  18. Dart AM, Lacombe F, Yeoh JK, et al. Aortic distensibility in patients with isolated hypercholesterolaemia, coronary disease, or cardiac transplant.Lancet 1991;338:270–273.Google Scholar
  19. Dzau VJ. Vascular renin-angiotensin system and vascular protection.J Cardiovasc Pharmacol 1993;22(Suppl 5):S1-S9.Google Scholar
  20. Emeriau JP. Patients with systolic hypertension.ACE Inhibition 1993;2:24–28.Google Scholar
  21. Farrar DJ, Bond G, Riley WA, Sawyer JK. Anatomic correlates of aortic pulse wave velocity and carotid artery elasticity during atherosclerosis progression and regression in monkeys.Circulation 1991;83:1754–1763.Google Scholar
  22. Farrar DJ, Green HD, Wagner WD. Reduction in pulse wave velocity and improvement of aortic distensibility accompanying regression of atherosclerosis in the Rhesus monkey.Circ Res 1980;47:425–432.Google Scholar
  23. Ferguson JJ III, Randall OS. Hemodynamic correlates of arterial compliance.Cathet Cardiovasc Diagn 1986;12:376–380.Google Scholar
  24. Frank O. Die Grundform des arteriellen Pulses.Z Biol 1899;37:483–526.Google Scholar
  25. Frank O. Die Elastizität der Blutgefäße.Z Biol 1920;71:255–272.Google Scholar
  26. Fry DL. Responses of the arterial wall to certain physical factors. In: Porter R, Knight J, eds.Atherogenesis: Initiating Factors. Ciba Foundation Symposium 12 (New Series). Amsterdam: Elsevier, 1973:93–125.Google Scholar
  27. Gebert G.Physiologie als Grundlage der klinischen Medizin. Stuttgart, Schattauer: 1987:67–68.Google Scholar
  28. Gobrecht H, Bergmann-Schäfer.Lehrbuch der Experimentalphysik Band I Mechanik, Akustik, Wärme. Berlin: W de Gruyter, 1974:230, 241.Google Scholar
  29. Gudbrandsson T, Julius S, Krause L, et al. Correlates of the estimated arterial compliance in the population of Tecumseh, Michigan.Blood Pressure 1992;1:27–34.Google Scholar
  30. Hamazaki T, Urakaze M, Sawazakis S, Yamazaki K, Taki H, Yano S. Comparison of pulse wave velocity of the aorta between inhabitants of fishing and farming villages in Japan.Atherosclerosis 1988;73:157–160.Google Scholar
  31. Handler CE, Child A, Light ND, Dorrance DE. Mitral valve prolapse, aortic compliance, and skin collagen in joint hypermobility syndrome.Br Heart J 1985;54:501–508.Google Scholar
  32. Hirata K, Triposkiadis F, Sparks E, Bowen J, Wooley CF, Boudoulas H. The Marfan syndrome: Abnormal aortic elastic properties.J Am Coll Cardiol 1991;18:57–63.Google Scholar
  33. Hopkins KD, Lehmann ED, Gosling RG, Parker JR, Sönksen PH. Biochemical correlates of aortic distensibility in vivo in normal subjects.Clin Sci 1993;84:593–597.Google Scholar
  34. Isnard RN, Pannier BM, Laurent S, London GM, Diebold B, Safar ME. Pulsatile diameter and elastic modulus of the aortic arch in essential hypertension: A noninvasive study.J Am Coll Cardiol 1989;13:399–405.Google Scholar
  35. Kannel WB, Wolf PA, McGee DL, Dawber TR, McNamara P, Castelli WP. Systolic blood pressure, arterial rigidity, and risk of stroke.JAMA 1981;245:125–129.Google Scholar
  36. Kannel WB, Dawber TR, McGee DL. Perspectives on systolic hypertension: The Framingham study.Circulation 1986;61:1179–1182.Google Scholar
  37. Kohno M, Kumada T, Ozaki M, et al. Evaluation of aortic wall distensibility by aortic pressure-dimension relation: Effects of nifedipine on aortic wall.Cardiovasc Res 1987;21:305–312.Google Scholar
  38. Laogun AA, Gosling RG. In vivo arterial compliance in man.Clin Phys Physiol Meas 1982;3:201–212.Google Scholar
  39. Learoyd BM, Taylor MG. Alterations with age in the viscoelastic properties of human arterial walls.Circ Res 1966;18:278–292.Google Scholar
  40. Lehmann ED, Gosling RG. Measuring aortic distensibility.Lancet 1991;338:1075.Google Scholar
  41. Lehmann ED, Gosling RG, Fatemi-Langroudi B, Taylor MG. Noninvasive Doppler ultrasound technique for the in vivo assessment of aortic compliance.J Biomed Eng 1992a;14:250–256.Google Scholar
  42. Lehmann ED, Gosling RG, Sönksen PH. Arterial wall compliance in diabetes.Diabet Med 1992b;9:114–119.Google Scholar
  43. Lehmann ED, Watts GF, Fatemi-Langroudi B, Gosling RG. Aortic compliance in young patients with heterozygous familial hypercholesterolaemia.Clin Sci 1992c;83:717–721.Google Scholar
  44. Lehmann ED, Watts GF, Gosling RG. Aortic distensibility and hypercholesterolemia.Lancet 1992d;340:1171–1172.Google Scholar
  45. Lehmann ED, Gosling RG, Parker JR, deSilva T, Taylor MG. A blood pressure independent index of aortic distensibility.Br J Radiol 1993a;66:126–131.Google Scholar
  46. Lehmann ED, Hopkins KD, Weissberger AJ, Gosling RG, Sönksen PH. Aortic distensibility in growth hormone deficient adults.Lancet 1993b;341:309.Google Scholar
  47. Lehmann ED, Parker JR, Hopkins KD, Taylor MG, Gosling RG. Validation and reproducibility of pressure-corrected aortic distensibility measurements using pulse-wave-velocity Doppler ultrasound.J Biomed Eng 1993c;15:221–228.Google Scholar
  48. London GM, Marchais SJ, Safar ME, et al. Aortic and large artery compliance in end-stage renal failure.Kidney Int 1990;37:137–142.Google Scholar
  49. London GM, Guerin A, Pannier B, Marchais SJ, Benetos A, Safar M. Increased systolic pressure in chronic uremia. Role of arterial wave reflections.Hypertension 1992;20:10–19.Google Scholar
  50. Mohiaddin RH, Underwood SR, Bogren HG, et al. Regional aortic compliance studied by magnetic resonance imaging: The effects of age, training, and coronary artery disease.Br Heart J 1989;62:90–96.Google Scholar
  51. Neutel JM, Smith HG, Graettinger F, Weber MA. Dependency of arterial compliance on circulating neuroendocrine and metabolic factors in normal subjects.Am J Cardiol 1992;69:1340–1344.Google Scholar
  52. Nichols WW, O'Rourke MF.McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, 3rd ed. Philadelphia: Edward Arnold, Lea and Febiger, 1990.Google Scholar
  53. Ochi H, Shimada T, Ikuma I, Morioka S, Moriyama K. Effect of decrease in aortic compliance on the isovolumic relaxation period of the left ventricle in man.Am J Noninvas Cardiol 1991;5:149–154.Google Scholar
  54. Opie L.Angiotensin Converting Enzyme Inhibitors. Scientific Basis for Clinical Use. New York: Wiley-Liss, 1992.Google Scholar
  55. O'Rourke MF.Arterial Function in Health and Disease. Edinburgh: Churchill Livingstone, 1982.Google Scholar
  56. O'Rourke MF. Arterial stiffness, systolic blood pressure and logical treatment of arterial hypertension.Hypertension 1990;15:339–347.Google Scholar
  57. O'Rourke MF. Pulse wave mechanics revisited: Relevance to therapy of cardiovascular disease with calcium antagonists.Heart Vessels 1992;7:113–122.Google Scholar
  58. Perret F, Mooser V, Hayoz D, et al. Evaluation of arterial compliance pressure curves. Effect of antihypertensive drugs.Hypertension 1991;18(Suppl II):II77-II83.Google Scholar
  59. Randall OS, Westerhof N, Van den Bos GC, Alexander BS. Reliability of stroke volume to pulse pressure rate for estimating and detecting changes in arterial compliance.J Hypertens 1986;4:S293-S296.Google Scholar
  60. Rutan GH, Kuller LH, Neaton JD, Wentworth DN, McDonald RH, McFate-Smith W. Mortality associated with diastolic hypertension among men screened for Multiple Risk Factor Intervention Trial.Circulation 1988;77:504–514.Google Scholar
  61. Safar ME, Pannier B, Laurent S, London GM. Calcium entry blockers and arterial compliance in hypertension.J Cardiovasc Pharmacol 1989;14(Suppl 10):S1-S6.Google Scholar
  62. Safar ME, Levy BI, Laurent S, London GM. Hypertension and the arterial system: Clinical and therapeutic aspects.J Hypertens 1990;8(Suppl 7):S113-S119.Google Scholar
  63. Safar ME, Boutouyrie P, Tual JL, Safavian T. A critical review of ischemic heart disease and therapeutic trials of hypertension.Cor Art Dis 1992;3:149–156.Google Scholar
  64. Schimmler W. Untersuchungen zu Elastizitätsproblemen der Aorta. Statistische Korrelation der Pulswellengeschwindigkeit zu Alter, Geschlecht und Blutdruck.Arch Kreislauf-forschung 1965a;47:189–233.Google Scholar
  65. Schimmler W. Uber die Altersumwandlung der elastischen Eigenschaften des Aorta-Iliaca Rohres beim Menschen.Klin Wschr 1965b;43:587–590.Google Scholar
  66. Seely S. Aortic distensibility.Lancet 1991;338:696–697.Google Scholar
  67. Simon AC, Levenson J, Bouthier JD, Safar M. Effects of chronic administration of enalapril and propranolol on the large arteries in essential hypertension.J Cardiovasc Pharmacol 1985;7:856–861.Google Scholar
  68. Simon A, O'Rourke M, Levenson J. Arterial distensibility and its effect on wave reflection and cardiac loading in cardiovascular disease.Cor Art Dis 1991;2:1111–1120.Google Scholar
  69. Sinn W. Die Elastizität der Arterien und ihre Bedeutung für die Dynamik des arteriellen Systems. Akademie der Wissenschaften und der Literatur Mainz 1956;11:642–832.Google Scholar
  70. Slama MA, Benetos A, Pannier B, et al. Study of non-invasive methods of investigating the elastic properties of the thoracic aorta.Arch Mal Coeur Vaiss 1992;85(SI1):47–50.Google Scholar
  71. Spence JD. Effects of antihypertensive drugs and blood velocity. In: Schettler G, Nerem RM, Schmid-Schönbein H, Mörl H, Diehm C, eds.Fluid Dynamics as a Localizing Factor for Atherosclerosis. Berlin: Springer-Verlag, 1983:141–144.Google Scholar
  72. Stratos C, Stefanidis C, Kallikazaros I, Boudoulas H, Toutouzas P. Ascending aorta distensibility abnormalities in hypertensive patients and response to nifedipine administration.Am J Med 1992;93:505–512.Google Scholar
  73. Stefanidis C, Karayannacos PE, Boudoulas H, et al. Medial necrosis and acute aortic distensibility following removal of the vasa vasorum of canine ascending aorta.Cardiovasc Res 1993;27:951–956.Google Scholar
  74. Stefanidis C, Wooley CF, Bush CA, Kolibash AJ, Boudoulas H. Aortic distensibility in coronary artery disease.Am J Cardiol 1987;59:1300–1304.Google Scholar
  75. Stefanidis C, Stratos C, Boudoulas H, Kourouklis C, Toutouzas P. Distensibility of the ascending aorta: Comparison of invasive and non-invasive techniques in healthy men and in men with coronary artery disease.Eur Heart J 1990;11:990–996.Google Scholar
  76. Thomas JR, Asmar RG, Safar ME. Effects of perindopril on structural and functional changes in hypertensive arteries.South Afr Med J 1991(Suppl):6–9.Google Scholar
  77. Vaitkevicius PV, Fleg JL, Engel JH, et al. Effects of age and aerobic capacity on arterial stiffness in healthy adults.Circulation 1993;88:1456–1462.Google Scholar
  78. Wahlquist ML, Lo CS, Myers KA. Fish intake and arterial wall characteristics in healthy people and diabetic patients.Lancet 1989;ii:944–946.Google Scholar
  79. Watanabe H, Ohtsuka S, Kakihana M, Sugishita Y. Coronary circulation in dogs with an experimental decrease in aortic compliance.J Am Coll Cardiol 1993;21:1497–1506.Google Scholar
  80. Watkins RW, Sybertz EJ, Antonellis A, Pula K. Effects of spiraprilic acid, an angiotensin converting enzyme inhibitor, on large artery compliance in anestethized dogs.Arch Intern Pharmacodyn Ther 1987;290:222–234.Google Scholar
  81. Watkins RW, Sybertz EJ, Antonellis A, Pula K, Rivelli M. Effects of the antihypertensive dilevalol on aortic compliance in anesthetized dogs.J Cardiovasc Pharmacol 1988a;12:42–50.Google Scholar
  82. Watkins RW, Sybertz EJ, Pula K, Antonellis A. Comparative effects of verapamil, diltiazem and nifedipine on aortic compliance in anesthetized dogs.Arch Intern Pharmacodyn Ther 1988b;293:134–142.Google Scholar
  83. Wezler K. Abhängigkeit der Arterienelastizität von Alter und dem Zustand der Wandmuskulatur (Untersuchungen am Lebenden).Z Kreislaufforschg 1935;27:721–745.Google Scholar
  84. Wezler K. Zur Windkessel theorie von E.H. Weber und O. Frank. In: Stauch M, ed.Konzeptionswandel in 50 Jahren Kreislaufphysiologie. Baden-Baden: G. Witzstrock, 1980:8–26.Google Scholar
  85. Wezler K, Böger A. Die Dynamik des arteriellen Systems.Ergebn Physiol 1939;41:291–606.Google Scholar
  86. Wiggers CJ. The circulation and circulation research in perspective. In: Hamilton WF, ed.Handbook of Physiology, Section 2 Circulation, Volume 1. American Society of Physiology, Washington, D.C.; 1962:1–10.Google Scholar
  87. Zanchetti A, Chalmers JP, Arakawa K, et al. The 1993 guide-lines for the management of mild hypertension: Memorandum from a WHO/ISH meeting.Blood Pressure 1993;2:86–100.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Gustav G. Belz
    • 1
  1. 1.Zentrum für Kardiovaskuläre PharmakologieZeKaPha GmbHMainzGermany

Personalised recommendations