Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Space-time interaction amongst clusters of mining induced seismicity

  • 67 Accesses

  • 10 Citations

Abstract

Elementary cluster analysis of induced seismicity in a South African gold mine has shown that there is a clear interaction amongst the clusters; and that the level of the interaction is a function of the distance. The clusering algorithm used is an adaptation of the single-link cluster analysis which considers both three-dimensional space and time. A high level of interaction between the clusters is demonstrated from the cross-correlation analysis of seismic activity rates and radiated energy. A distinct decrease in the value of correlation coefficients was detectable as distance increased. This was somewhat surprising, considering the simplicity of the technique used. Since no attempt is made to study the physical mechanisms of interaction, these results are very preliminary, but interesting from an observational point of view.

This is a preview of subscription content, log in to check access.

References

  1. Alberto, D., Mucciarelli, M., andMantovani, E. (1989),Use of Non-parametric Correlation Tests for the Study of Seismic Interrelations, Geophys. J.96, 185–188.

  2. Anderson, J. G., Louie, J., Brune, J. N., de Polo, D.,Savage, M., andYu, G. (1992),Seismicity in Nevada Apparently Triggered by the Landers, California, Earthquake, June 28, 1992 (abstract), EOS Supplement, 1992 Fall Meeting, American Geophysical Union, 393.

  3. Anderson, J. G., Brune, J. N., Louie, J., Zeng, Y., Savage, M., Yu, G., Chen, Q., andde Polo, D. (1993),Seismicity in the Western Great Basin Apparently Triggered by the Landers, California Earthquake, June 28, 1992, Preprint, August 3, 1993, 19 pp.

  4. Båth, M. (1984a),Correlation between Regional and Global Seismic Activity, Tectonophysics104, 187–194.

  5. Båth, M. (1984b),Correlation between Greek and Global Seismic Activity, Tectonophysics109, 345–351.

  6. Butler, A. G. (1994), Unpublished manuscript.

  7. Chiaruttini, C., Kijko, A., andTeisseyre, R. (1980),Tectonic Discrimination of the Fruli Earthquakes, Bull. Geofis. Ther. Appl.22, 295–302.

  8. Davis, S. D., andFrohlich, C. (1991),Single-link Cluster Analysis, Synthetic Earthquake Catalogs, and Aftershocks Identification, Geophys. J. Int.104, 289–306.

  9. Dimri, V.,Deconvolution and Inverse Theory. Application to Geophysical Problems (Elsevier, Amsterdam 1992).

  10. Dziewonski, A. M., andProzorov, A. G. (1984),Self-similar Determination of Earthquake Clustering, Comp. Seism.16, 7–16.

  11. Eneva, M., andPavlis, G. L. (1988),Application of Pair Analysis Statistics to Aftershocks of the 1984 Morgan Hill, California Earthquake, J. Geophys. Res.93, 9113–9125.

  12. Frohlich, C., andDavis, S. D. (1990),Single-link Cluster Analysis as a Method to Evaluate Spatial and Temporal Properties of Earthquake Catalogs, Geophys. J. Int.100, 19–32.

  13. Gibowicz, S. J., andKijko, A.,An Introduction to Mining Seismology (Academic Press, San Diego 1994).

  14. Habermann, R. E., (1988),Precursory Seismic Quiescence: Past, Present and Future, Pure and Appl. Geophys.126, 279–318.

  15. Hili, D. P., Reasenberg, P. A., Michael, A., Arabasz, W. J., Beroza, G., Braumbaugh, D., Brune, J. N., Castro, R., Davis, S., de Polo, D., Ellsworth, W. L., Gomberg, J., Harmsen, S., Hause, L., Jackson, S. M., Johnston, M. J. S., Jones, L., Keller, R., Malone, S., Maunguia, L., Nava, S., Pechmann, J. C., Sanford, A., Simpson, R. W., Smith, R. W., Stark, M., Stickney, M., Vidal, A., Walter, S., Wong, V., andZollweg, J. (1993),Seismicity Remotely Triggered by the Magnitude 7.3 Landers, California Earthquake, Science260, 1617–1623.

  16. Johnson, C., Keilis-Borok, V. I., Lamore, R., andMinister, B. (1984),Swarms, of Main Shocks in Southern California, Comp. Seism16, 1–6.

  17. Kagan, Y. Y. (1981),Spatial Distribution of Earthquakes: Four-point Moment Function, Phys. Earth Planet. Int.12, 291–318.

  18. Kagan, Y. Y., andJackson, D. D. (1991a),Long-term Earthquake Clustering, Geophys. J. Int.104, 117–133.

  19. Kagan, Y. Y., andJackson, D. D. (1991b),Seismic Gap Hypothesis: Ten Years After, J. Geophys. Res.96, 21419–21431.

  20. Kagan, Y. Y., andKnopoff, L. (1980),Spatial Distribution of Earthquakes: The Two Point Correlation Function, Roy. Astron. Soc.62, 303–320.

  21. Keilis-Borok, V. I., Podgaetskaya, V. M., andProzorov, A. G.,Local statistics of earthquake catalogs. InComputational Seismology (ed. V. I. Keilis-Borok) (Consultants Bureau, New York 1972) pp. 214–227.

  22. Kijko, A. (1980),Statistical Test of Mutual Dependence of Seismic Activities in Two Adjacent Regions, Publ. Inst. Geophys. Pol. Acad. Sci.A-10 (142), 125–133.

  23. Kijko, A., Funk, C. W., andBrink, A. V. Z. (1993),Identification of anomalous patterns in time-dependent mine seismicity. Proceedings of the 3rd International Symposium on Rockbursts and Seismicity in Mines, 16–18 August 1993, Kingston, Ontario, Canada, 205–210.

  24. Lei, X., Nishizawa, O., andKusunose, K. (1993),Band-limited Heterogeneous Fractal Structure of Earthquakes and Acoustic-emission Events, Geophys. J. Int.115, 79–84.

  25. Mandelbrot, B. B.,The Fractal Geometry of Nature (Freeman, San Francisco 1982).

  26. Mandelbrot, B. B. (1989),Multifractal Measures, Especially for the Geophysicists, Pure and Appl. Geophys.131, 5–42.

  27. Mantovani, E., Mucciarelli, M., andAlberto, D. (1987),Evidence of Interrelation between the Seismicity of the Southern Apennines and Southern Dinarides, Phys. Earth Planet. Interiors49, 259–263.

  28. Matsumura, S. (1984),A One-parameter Expression of Seismicity Patterns in Space and Time, Bull. Seismol. Soc. Am.74, 2529–2576.

  29. Michael, A. W. (1992),Initiation of Seismicity Remotely Triggered by the Landers Earthquake: Where and When (abstract), EOS Supplement, 1992 Fall Meeting, American Geophysical Union, 392–393.

  30. Mucciarelli, M., Alberto, D., andMantovani, E. (1988),Earthquake Forecasting in Southern Italy on the Basis of Logistic Models, Tectonophysics152, 153–155.

  31. Natale, G. D., andZollo, A. (1986),Statistical Analysis and Clustering Features of the Phlegraean Fields Earthquake Sequence, Bull. Seismol. Soc. Am.76, 801–814.

  32. Prozorov, A. G., andDziewonski, A. M. (1982),A Method of Studying Variations in the Clustering Property of Earthquakes: Application to the Analysis of Global Seismicity, JGR87, 2829–2839.

  33. Reasenberg, P. A., andMatthews, M. V. (1988),Precursory Seismic Quiescence: A Preliminary Assessment of the Hypothesis, Pure and Appl. Geophys.126, 373–406.

  34. Reasenberg, P. A., Hill, D. P., Michael, A. J., Simpson, R. W., Ellsworth, W. L., Walter, S., Johnston, M., Smith, R., Nava, S. J., Arabasz, W. J., Pechmann, J. C., Gomberg, J., Brune, J. N., de Polo, D., Beroza, G., Davis, S. D., andZollweg, J. (1992),Remote Seismicity Triggered by the M7.5 Landers, California Earthquake of June 28, 1992 (abstract), EOS Supplement, 1992, 1992 Fall Meeting American Geophysical Union, 392.

  35. Smalley, R., Jr., Chatelain, J.-L., Turcotte, D., andPrévot, R. (1987),A Fractal Approach to the Clustering of Earthquakes: Applications to the Seismicity of the New Hebrides, Bull. Seismol. Soc. Am.77, 1368–1381.

  36. Wardlaw, R. L., Frohlich, C., andDavis, S. D. (1990),Evaluation of Precursory Seismic Quiescence in Sixteen Subduction Zones Using Single-link Cluster Analysis, Pure and Appl. Geophys.134, 57–78.

  37. Wyss, M., andHabermann, R. E. (1988),Precursory Seismic Quiescence, Pure and Appl. Geophys.126, 319–332.

  38. Xie, H., andPariseau, W. G. (1993),Fractal Character and Mechanism of Rock Bursts, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr.30, 343–350.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kijko, A., Funk, C.W. Space-time interaction amongst clusters of mining induced seismicity. PAGEOPH 147, 277–288 (1996). https://doi.org/10.1007/BF00877483

Download citation

Key words

  • Induced seismicity
  • clustering
  • space-time interaction