Aquatic Sciences

, Volume 53, Issue 4, pp 309–329 | Cite as

The solubility of iron sulphides in synthetic and natural waters at ambient temperature

  • W. Davison
Article

Abstract

A critical evaluation of literature values for the solubility products, K sp NBS = [Fe2+][HS]γ Fe2+γ HS (H NBS + )−1, of various iron sulphide phases results in consensus values for the pKs of 2.95 ± 0.1 for amorphous ferrous sulphide, 3.6 ± 0.2 for mackinawite, 4.4 ± 0.1 for greigite, 5.1 ± 0.1 for pyrrhotite, 5.25 ± 0.2 for troilite and 16.4 ± 1.2 for pyrite.

Where the analogous ion activity products have been measured in anoxic freshwaters in which there is evidence for the presence of solid phase FeS, the values lie within the range of 2.6–3.22, indicating that amorphous iron sulphide is the controlling phase. The single value for a groundwater of 2.65 (2.98 considering carbonate complexation) agrees. In seawater four values range between 3.85 to 4.2, indicating that mackinawite or greigite may be the controlling phase. The single low value of 2.94 is in a situation where particularly high fluxes of Fe (II) and S (−II) may result in the preferential precipitation of amorphous iron sulphide. Formation of framboidal pyrite in these sulphidic environments may occur in micro-niches and does not appear to influence bulk concentrations. Calculations show that the formation of Fe2S2 species probably accounts for very little of the iron or sulphide in most natural waters. Previously reported stability constants for the formation of Fe (HS)2 and (Fe (HS)3) are shown to be suspect, and these species are also thought to be negligible in natural waters. In completely anoxic pore waters polysulphides also have a negligible effect on speciation, but in tidal sediments they may reach appreciable concentrations and lead to the direct formation of pyrite. Concentrations of iron and sulphide in pore waters can be controlled by the more soluble iron sulphide phase. The change in the IAP with depth within the sediment may reflect ageing of the solid phase or a greater flux of Fe (II) and S (−II) nearer the sediment surface. This possible kinetic influence on the value of IAPs has implications for their use in geochemical studies involving phase formation.

Key words

Iron sulphides natural waters anoxic basins sediments solubility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aller, R. C., 1980. Diagenetic processes near the sediment-water interface of Long Island Sound. II. Fe and Mn. In B. Saltzmann (Editor), Estuarine physics and chemistry: studies in Long Island Sound, Adv. in Geophysics, V22, Acad. Press., New York.Google Scholar
  2. Bard, A. J., R. Parson, and J. Jordon, 1985. Standard Potentials in Aqueous Solution, Marcell Dekker, New York, 834 pp.Google Scholar
  3. Berner, R. A., 1964. Iron sulphides formed from aqueous solutions at low temperatures and pressures. J. Geol. 72:293–206.Google Scholar
  4. Berner, R. A., 1967. Thermodynamic stability of sedimentary iron sulphides. Am. J. Sci., 265:773–785.Google Scholar
  5. Berner, R. A., 1971. Principles of Chemical Sedimentology. McGraw-Hill, New York, 240 pp.Google Scholar
  6. Betzer, P. R., 1971. The concentration and distribution of particulate iron in waters of the Northwestern Atlantic Ocean and Caribbean Sea. Ph. D. Thesis, University of Rhode Island, Kingston.Google Scholar
  7. Boulegue, J., 1977. Equilibria in a sulphide rich water from Enghien-les-Bains, France. Geochim. Cosmochim. Acta 41:1751–1758.Google Scholar
  8. Boulegue, J. and G. Michard, 1979. Sulphur speciations and redox processes in reducing environments. In: E. A. Jenne (Editor), Chemical modelling in aqueous systems. Am. Chem. Soc., Washington, D. C., pp 25–50.Google Scholar
  9. Boulegue, J., C. J. Lord, and T. M. Church, 1982. Sulphur speciation and associated trace metals (Fe, Cu) in the pore waters of Great Marsh, Delaware. Geochim. Cosmochim. Acta 46:543–464.Google Scholar
  10. Bruner, L. and I. Zawadski, 1910. Über die Gleichgewichte bei der Schwefelwasserstoffallung der Metalle. 65:136–151.Google Scholar
  11. Buffle, J., 1988. Complexation reactions in aquatic systems — an analytical approach. Ellis Horwood, Chichester, 692 pp.Google Scholar
  12. Buffle, J., R. R. Devitre, D. Perret, and G. G. Leppard, 1988. Combining field measurements for speciation in non perturbable water samples. In: J. A. Kramer and H. E. Allen (Editors), Metal Speciation: Theory, Analysis and Application, Lewis, Michigan.Google Scholar
  13. Burn, M. C., 1987. Procedures for improving the precision of pH measurements in freshwaters. Ph. D. Thesis, University of Newcastle-upon-Tyne.Google Scholar
  14. Cook, R. B., 1984. Distributions of ferrous iron and sulphide in an anoxic hypolimnion. Can. J. Fish. Aquat. Sci. 41:286–293.Google Scholar
  15. Covington, A. K., R. G. Bates, and R. A. Durst, 1985. Definition of pH scales, standard reference values, measurement of pH and related terminology. Pure Appl. Chem. 57:531.Google Scholar
  16. Culberson, C. H., 1981. Direct Potentiometry. In: M. Whitfield and D. Jagner (Editors), Marine Electrochemistry. Wiley, Chichester, pp 187–261.Google Scholar
  17. Davison, W., 1977. The polarographic measurement of O2, Fe2+, Mn2+ and S2- in hypolimnetic water. Limnol. Oceanogr. 22:746–753.Google Scholar
  18. Davison, W. and S. I. Heaney, 1978. Ferrous iron sulphide interactions in anoxic hypolimnetic waters. Limnol. Oceanogr. 23:1194–1200.Google Scholar
  19. Davison, W., 1979. Soluble inorganic ferrous complexes in natural waters. Geochim. Cosmochim. Acta 43:1693–1696.Google Scholar
  20. Davison, W., 1980. A critical comparison of the measured solubilities of ferrous sulphide in natural waters. Geochim. Cosmochim. Acta44:803–808.Google Scholar
  21. Davison, W. and S. I. Heaney, 1980. Determination of the solubility of ferrous sulphide in a seasonally anoxic marine basin. Limnol. Oceanogr. 25:153–156.Google Scholar
  22. Davison, W. and B. J. Finley, 1986. Ferrous iron and phototrophy as alternative sinks for sulphide in the anoxic hypolimnia of two adjacent lakes. J. Ecol. 74:663–673.Google Scholar
  23. Davison, W. and T. R. Harbinson, 1988. Performance testing of pH electrodes suitable for low ionic strength solutions. Analyst 113:709–713.Google Scholar
  24. De Vitre, R. R., 1986. Multimethod characterization of the forms of iron, manganese, and sulphur in an eutrophic lake (Bret, Vaud, Switzerland). Ph. D. dissertation, Univ. of Geneva, Switzerland.Google Scholar
  25. Desborough, G. A. and R. H. Carpenter, 1965. Phase relations of pyrrhotite. Econ. Geol. 60:1431–1450.Google Scholar
  26. Douabul, A. A. and J. P. Riley, 1979. The solubility of gases in distilled water and seawater, V. hydrogen sulphide. Deep-Sea Res. 26A:259–268.Google Scholar
  27. Duchat, P., S. Calvert, and N. Price, 1973. Distribution of trace metals in the pore waters of shallow marine sediments. Limnol. Oceanogr. 18:605–610.Google Scholar
  28. Dyrssen, D. and R. Hallberg, 1979. Anoxic sediment reactions — a comparison between box experiments and a Fjord investigation. Chem. Geol. 24:151–159.Google Scholar
  29. Dyrssen, D., 1985. Metal complex formation in sulphidic seawater. Mar. Chem. 15:285–293.Google Scholar
  30. Dyrssen, D., 1988. Sulfide complexation in surface seawater. Mar. Chem. 24:143–153.Google Scholar
  31. Emerson, S., 1976. Early diagenesis in anaerobic lake sediments: chemical equilibria in interstitial waters. Geochim. Cosmochim. Acta 40:925–934.Google Scholar
  32. Emerson, S., R. E. Cranston, and P. S. Liss, 1979. Redox species in a reducing fjord: equilibrium and kinetic considerations. Deep-Sea Res. 26A:859–878.Google Scholar
  33. Emerson, S., L. Jacobs, and B. Tebo, 1983. The behaviour of trace metals in marine anoxic waters: solubilities at the oxygen-hydrogen sulphide interface. In: C. S. Wong, E. Boyle, K. W. Bruland, J. D. Burton and E. D. Goldberg (Editors), Trace Metals in Seawater. Plenum, New York, N. Y., pp 579–608.Google Scholar
  34. Fonselius, S. H., 1969. Hydrography of the Baltic deep basins 111. Fish Board Swed. Ser.Google Scholar
  35. Foreman, F., 1929. Hydrothermal experiments on solubility, hydrolysis and oxidation of iron and copper sulphides. Econ. Geol. 24:811–837.Google Scholar
  36. Gamsjaeger, H., F. Reiterer, and R. Heindl, 1982. Solubility constants and free enthalpies of metal sulphides and carbonates. Ber. Bunsenges Phys. Chem. 86:1046–1049.Google Scholar
  37. Garrels, R. M. and C. L. Christ, 1965. Solutions, Minerals and equilibria, Harper and Row, New York.Google Scholar
  38. Giblin, A. E. and R. W. Howarth, 1984. Porewater evidence for a dynamic sedimentary iron cycle in salt marshes. Limnol. Oceanogr. 29:47–63.Google Scholar
  39. Goldhaber, M. B. and I. R. Kaplan, 1975. Apparent dissociation constants of hydrogen sulphide in chloride solutions. Mar. Chem. 3:83–104.Google Scholar
  40. Hamilton-Taylor, J. and N. B. Price, 1983. The geochemistry of iron and manganese in the waters and sediments of Bolstadfjord, S. W. Norway. Est. Coast. Shelf. Sci. 17:1–19.Google Scholar
  41. Heindl, R. and H. Gamsjaeger, 1977. Solubility constants and free enthalpies of metal sulphides, Part 6: A new solubility cell. Monatsch. Chemie. 108:1356–1369.Google Scholar
  42. Hoshika, A., O. Takimura, and T. Shiozawa, 1978. Vertical distribution of particulate manganese and iron in Beppu Bay. J. Oceanogr. Soc. Japan 34:261–264.Google Scholar
  43. Howarth, R. W. and B. B. Jorgensen, 1984. Formation of 35S-labelled elemental sulphur and pyrite in coastal marine sediments (Limfjorden and Kysing Fjord, Denmark) during short-term 35SO 4/2- reduction measurements. Geochim. Cosmochim. Acta 48:1807–1818.Google Scholar
  44. Jacobs, L. and S. Emerson, 1982. Trace metal solubility in an anoxic fjord. Earth Planet. Sci. Lett. 60:237–252.Google Scholar
  45. Jacobs, L., S. Emerson, and J. Skei, 1985. Partitioning and transport of metals across the O2/H2S interface in a permanently anoxic basin: Framvaren Fjord, Norway. Geochim. Cosmochim. Acta 49:1433–1444.Google Scholar
  46. Kawashima, M., H. Hara, O. Itsaka, T. Hori, T. Takamatsu, and M. Koyama, 1983. Chemical changes in Lake Biwa. Mem. Foc. Ed. Shiga Univ. 33:67–101.Google Scholar
  47. Kawashima, M., T. Hori, M. Koyama, and T. Takamatsu, 1985. Redox cycle of manganese and iron and the circulation of phosphorus in a dredged area of the southern lake. Kukuritsu Kugai Kenkyusho Kenkt Hokoku 75:47–62.Google Scholar
  48. Khodakovskii, I. P., 1966. On the hydrosulphide form of heavy metal transportation in hydrothermal solutions. Geokhimiya 7:960–971.Google Scholar
  49. King, R. D. and P. A. Tyler, 1982. Lake Fidler, a meromictic lake in Tasmania. Arch. Hydrobiol. 93:393–422.Google Scholar
  50. Kjensmo, J., 1967. The development and some main feature of “iron-meromictic” soft water lakes. Arch. Hydrobiol. Suppl. 32:137–312.Google Scholar
  51. Kolthoff, I.M. and F.S. Griffith, 1938. Studies on ageing and properties of precipitates. XXIII. The postprecipitation of ferrous sulphide with cupric sulphide. J. Am. Chem. Soc. 60:2036–2039.Google Scholar
  52. Koroleff, F., 1968. A note on the iron content of Baltic waters. ICES. C. M., C 34.Google Scholar
  53. Kremling, K., 1983. The behaviour of Zn, Cd, Cu, Ni, Co, Fe, and Mn in anoxic Baltic waters. Mar. Chem. 13:87–108.Google Scholar
  54. Lahann, R. W., 1976. Molybdenum transport mechanisms in fresh-water environments. Ph. D. Thesis, University of Illinois.Google Scholar
  55. Lahann, R. W., 1977. Molybdenum and iron behaviour in oxic and anoxic lake water. Chem. Geol. 20:315–323.Google Scholar
  56. Leventhal, S. S., 1983. An interpretation of carbon and sulphur relationships in Black Sea sediments as indicators of environments of deposition. Geochim. Cosmochim. Acta 47:133–137.Google Scholar
  57. Licht, S. and J. Manassen, 1987. The second dissociation constant of H2S. J. Electrochem. Soc. 134:918–921.Google Scholar
  58. Licht, S., 1988. Aqueous solubilities, solubility products and standard oxidation-reduction potentials of the metal sulphides. J. Electrochem. Soc. 135:2971–2975.Google Scholar
  59. Liden, J., 1983. Equilibrium approaches to natural water systems — Part 3: a study of equilibrium reactions of Fe2+ during its diffusional transport through the anoxic hypolimnion of an icecovered lake. Schweiz. Z. Hydrol. 45:411–429.Google Scholar
  60. Liotta, F. P., 1979. Dissolved oxygen demand for reduced chemical species in the water column of Sebasticook Lake, Maine. NTIS Report W79-04684, 55 pp.Google Scholar
  61. Luther, G. W., A. Giblin, A. W. Howarth, and R. A. Ryans, 1982. Pyrite and oxidized iron mineral phases formed from pyrite oxidation in salt marsh and estuarine sediments. Geochim. Cosmochim. Acta 46:2665–2669.Google Scholar
  62. Luther, G. W., A. E. Giblin, and R. Varsolonu, 1985. Polarographic analysis of sulphur species in marine porewaters. Limnol. Oceanogr. 30:727–736.Google Scholar
  63. Morse, J. W. and J. C. Cornwell, 1987. Analysis and distribution of iron sulphide minerals in recent anoxic marine sediments. Mar. Chem. 22:55–69.Google Scholar
  64. Morse, J. W., F. J. Millero, J. C. Cornwell, and D. Rickard, 1987. The chemistry of the hydrogen sulphide and iron sulphide systems in natural waters. Earth-Sci. Rev. 24:1–42.Google Scholar
  65. Moser, L. and M. Behr, 1924. Die Bestimmung der Metalle der Schwefelammengruppe durch Schwefelwasserstoff unter Druck. Z. anorg. Allgem. Chem. 134:49–74.Google Scholar
  66. Murray, J. W., V. Grundmaris, and W. M. Smethie, 1978. Interstitial chemistry in the sediments of Saanich Inlet. Geochim. Cosmochim. Acta 42:1011–1026.Google Scholar
  67. Naumov, G. B., B. N. Ryzhenco, and I. L. Khodakovski, 1974. Handbook of Thermodyanic Data (translated from the Russian edition, 1971, by G. L. Solermani) NTIS report PB-226722, 328 pp.Google Scholar
  68. Nuhfer, E. B. and A. S. Pavlovic, 1979. Association of kaolinite with pyrite framboids. J. Sed. Petrol 49:321–324.Google Scholar
  69. Olshanskii, YA. I. and V. V. Ivanenko, 1958. Mechanism of mass transfer in the formation of hydrothermal deposits of sulphides. Tr. Inst. Geol. rudn. Mestorosh. 16:14–46.Google Scholar
  70. Postma, D., 1982. Pyrite and siderite formation in brackish and freshwater swamp sediments. Am. J. Sci. 282:1151–1183.Google Scholar
  71. Presley, B., Y. Yolodny, A. Nissenbaum, and I. R. Kaplan, 1972. Early diagenesis in a reducing fjord. Saanich Inlet, British Columbia. 2. Hydrogr. Rept. 23, 97 pp.Google Scholar
  72. Psenner, R., 1983. Die Entstehung von Pyrit in rezenten Sedimenten des Piburger Sees. Schweiz. Z. Hydrol. 45:219–232.Google Scholar
  73. Richards, F. A. and R. F. Vaccaro, 1956. The Cariaco Trench, an anaerobic basin in the Carribean Sea. Deep Sea Res. 3:214–228.Google Scholar
  74. Richards, F. A., 1964. Chemical observations in some anoxic sulphide bearing basins and fjords. Proc. Second Int. Water Pollution Res. Conf., Pergamon, pp 215–243.Google Scholar
  75. Richards, F. A., J. D. Cline, W. W. Broenkow, and L. P. Atkinson, 1965. Some consequences of the decomposition of organic matter in Lake Nitinat, an anoxic Fjord. Limnol. Oceanogr. 10 (Suppl.):R185-R201.Google Scholar
  76. Richards, F. A., 1975. The Cariaco basin (trench). Oceanogr. Mar. Biol. Annu. Rev. 13:11–67.Google Scholar
  77. Robie, R. A., 1966. Thermodynamic properties of minerals. Mem. Am. Geol. Soc. 97:437–458.Google Scholar
  78. Robie, R. A., B. S. Hemingway, and J. R. Fisher, 1978. Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures. Geol. Surv. Bull 1452, U.S. Gov., Washington.Google Scholar
  79. Robinson, R. A. and R. H. Stokes, 1959. Electrolyte Solutions, 2nd edn. Butterworths, London.Google Scholar
  80. Ross, D. A. and E. T. Degens, 1974. Recent sediment of Black Sea. In: E. T. Degens and D. A. Ross (Editors), The Black Sea: Geology, Chemistry and Biology. AAPG Mem., 20, pp 183–199.Google Scholar
  81. Sillen, L. G. and A. E. Martell, 1964. Stability Constants. Special publication No. 17, Chem. Soc.Google Scholar
  82. Sillen, L. G. and A. E. Martell, 1971. Stability Constants. Supplement No. 1, Special publications No. 25, Chem. Soc.Google Scholar
  83. Smith, R. M. and A. E. Martell, 1976. Critical Stability Constants, Vol. 4. Inorganic Complexes, Plenum.Google Scholar
  84. Spencer, D. W. and P. G. Brewer, 1971. Vertical advection diffusion and redox potentials as controls on the distribution of manganese and other trace metals dissolved in waters of the Black Sea. J. Geophys. Res. 76:5877–5892.Google Scholar
  85. Spencer, D. W., P. G. Brewer, and P. L. Sachs, 1972. Aspects of the distribution and composition of suspended matter in the Black Sea. Geochim. Cosmochim. Acta 36:71–86.Google Scholar
  86. Stauffer, R. E., 1986. Cycling of manganese and iron in Lake Mendota, Wisconsin. Environ. Sci. Technol. 20:449–457.Google Scholar
  87. Stumm, W. and J. J. Morgan, 1981. Aquatic Chemistry. Wiley, New York, N. Y. 780 pp.Google Scholar
  88. Tewari, P. H. and A. B. Campbell, 1976. Dissolution of iron sulphide (Troilite) in aqueous sulphuric acid. J. Phys. Chem. 80:1844–1848.Google Scholar
  89. Tewari, P. H., G. Wallace, and A. B. Campbell, 1978. The solubility of iron sulphides and their role in mass transport in Girdler-Sulphide heavy water plants. Rep. At. Energy Can. Ltd., AECL-5960, 1–34.Google Scholar
  90. Tewari, P. H. and A. B. Campbell, 1979. Dissolution of iron during the initial corrosion of carbon steel in aqueous H2S solutions. Can. J. Chem. 57:188–196.Google Scholar
  91. Vaughan, D. J. and J. R. Craig, 1978. Mineral Chemistry of Metal Sulphides. Cambridge University Press, Cambridge, 493 pp.Google Scholar
  92. Ward, J. C., 1970. The structure and properties of some iron sulphides. Rev. Pure Appl. Chem. 20:175–206.Google Scholar
  93. Weigel, O., 1906. Behaviour of sulphides of heavy metals in water solution. Machr. Kgl. Geo. Wiss. Gottingen math. phys. Kl. 525–548.Google Scholar
  94. Weigel, O., 1907. The solubility of the sulphides of the heavy metals in water. Z. Physik. Chem. 58:293–300.Google Scholar
  95. Wersin, P., W. Stumm, and J. Bruno, 1991. The solubility of FeCO3(s) at 25°C. Geochim. Cosmochim. Acta, in press.Google Scholar
  96. Whitfield, M., 1979. Activity coefficients in natural waters. In: R. M. Pytkowicz (Editor), Activity Coefficients in Electrolyte Solutions, Vol. 2., CRC Press, Florida.Google Scholar
  97. Whitfield, M., R. A. Butler, and A. K. Covington, 1985. The determination of pH in estuarine waters. I. Definition of pH scales and the selection of buffers. Oceanol. Acta 8:423–432.Google Scholar
  98. Yagi, A. and I. Shimodaira, 1986. Seasonal change of iron and manganese in Lake Fukami-ike — occurrence of turbid manganese layer. Jpn. J. Limnol. 47:279–289.Google Scholar
  99. Zehnder, J. B. A. and W. Stumm, 1988. Geochemistry and biogeochemistry of anaerobic habitats. In: A. J. B. Zehnder (Editor), Biology of anaerobic microorganisms, Wiley, New York.Google Scholar

Copyright information

© Birkhäuser Verlag 1991

Authors and Affiliations

  • W. Davison
    • 1
  1. 1.The Ferry HouseInstitute of Freshwater EcologyAmblesideGB

Personalised recommendations