pure and applied geophysics

, Volume 114, Issue 3, pp 479–494 | Cite as

The variation of crustal thickness across the Swiss Alps based on gravity and explosion seismic data

  • H. G. Kahle
  • E. Klingele
  • St. Mueller
  • R. Egloff


Recently determined gravity anomalies along the NW-SE oriented Swiss Geotraverse from Basel to Bellinzona are used in combination with seismic refraction data to deduce a crustal section across the Swiss Alps. Topographic, Bouguer, free air, isostatic and geological corrections were applied to the data. Geological features considered in the corrections are the Swiss Molasse basin filled with sediments and the Ivrea body of high-density material. The resultant Bouguer anomaly over the Gotthard massif is 130 mgal lower than the Bouguer anomaly at the northern end of the profile near Basel. The Alpine region is associated with negative isostatic anomalies down to −20 mgal. The crustal thickness is found to increase gradually from the northern end of the profile (thicknessH=30 km) towards the Helvetic nappes at the northern margin of the Alps (H=38 km) and more rapidly towards the Gotthard massif (H=50 km) and further south to Biasca down to a depth of 58 km. From Biasca southward the crustal thickness thins quite rapidly to reach a depth of 30 km at the southern end of the profile near Bellinzona. Thus the Alps have a distinct asymmetric crustal root whose maximum thickness is almost twice the average crustal thickness in Central Europe. With the Mohorovičić-discontinuity deduced from seismic observations an average constant density contrast of −0.33 gcm−3 is found between the lower crust and upper mantle underneath the Alps.


Seismic Data Gravity Anomaly Molasse Crustal Thickness Bouguer Anomaly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. G. B. Airy (1855),On the computations of the effect of the attraction of the mountain masses as disturbing the apparent astronomical latitude of stations in geodetic surveys, Phil. Trans. Roy. Soc., London, Series B145, 101–104.Google Scholar
  2. Y. Beaufils (1967),Expérience du Lac Blanc, Proc. 9th ESC General Assembly, Copenhagen, 257–264.Google Scholar
  3. Cl. Behnke (1967),Seismic velocities in the Central Alps' crust, Proc. 9th ESC General Assembly, Copenhagen, 97–101.Google Scholar
  4. H. Berckhemer (1968) (German Research Group for Explosion Seismology),Topographie des ‘Ivrea-Körpers’ abgeleitet aus seismischen und gravimetrischen Daten. Schweiz. mineral. petrogr. Mitt., Band 48, Heft 1, 235–246.Google Scholar
  5. P. Bouguer (1749),La figure de la terre déterminée par les observations de M. M. Bouguer et de La Condamine, Paris, 364 pp.Google Scholar
  6. U. P. Buechi, K. Lemcke, G. Wiener andJ. Zimdars (1965),Geologische Ergebnisse der Erdölexploration auf das Mesozoikum im Untergrund des Schweizerischen Molassebeckens, Bull. Verh. Schweiz. Petrol. Geol. u. Ing.32, no. 82, 7–38.Google Scholar
  7. A. Buxtorf andW. Nabholz (1957),Geologische Generalkarte der Schweiz 1: 200 000, Blatt 3, Zürich-Glarus, 81 pp.Google Scholar
  8. M. Choudury, P. Giese, andG. de Visintini (1971),Crustal structure of the Alps: Some general features from explosion seismology, Bolletino di Geofisica Teorica ed Applicata13, no. 51/52, 211–240.Google Scholar
  9. H. Closs (1966),Der Untergrund der Alpen im Lichte geophysikalischer Messungen, Erdöl und Kohle, 19. Jahrgang, no. 2, 81–88.Google Scholar
  10. H. Closs (1969),Explosion seismic studies in western Europe. In:The earth's crust and upper mantle, AGU Geophysical Monograph, Ser. no. 13, 178–188.Google Scholar
  11. J. B. Edel, K. Fuchs, C. Gelbke, andC. Prodehl (1975),Deep structure of the southern Rhinegraben area from seismic refraction investigations, J. Geophys. (Z. Geophys.)41, 333–356.Google Scholar
  12. R. Egloff andJ. Ansorge (1976),Krustenstruktur unter dem Faltenjura (Abstract), 36th Annual meeting of the ‘Deutsche Geophysikalische Gesellschaft,’ Bochum.Google Scholar
  13. K. Fuchs, St. Mueller, E. Peterschmitt, J.-P. Rothe, A. Stein, andK. Strobach (1963),Krustenstruktur der Westalpen nach refraktionsseismischen Messungen, Gerlands Beiträge zur Geophysik72, 149–169.Google Scholar
  14. K. Fuchs (1974),Geophysical contributions to taphrogenesis. In:Approaches to taphrogenesis, Schweizerbartsche Verlagsbuchhandlung, Stuttgart, 420–432.Google Scholar
  15. A. Gansser (1968),The Insubric Line, a major geotectonic problem, Schweiz. mineral. petrogr. Mitt. Band 48, Heft 1, 123–143.Google Scholar
  16. F. Gassmann andD. Prosen (1948),Zur Interpretation des Schweredefizites in den Schweizer Alpen, Eclogae geol. Helv.41, 135–140.Google Scholar
  17. P. Giese (1966),Neue Gesichtspunkte zur Gliederung der Erdkruste aufgrund refraktionsseismischer Messungen, Z. Geophys.32, 488–491.Google Scholar
  18. P. Giese (1968),Versuch einer Gliederung der Erdkruste im nördlichen Alpenvorland, in den Ostalpen und in Teilen der Westalpen mit Hilfe charakteristischer Refraktionslaufzeitkurven sowie eine geologische Deutung, Veröff. Inst. Meteorologie u. Geophysik, Berlin, Band 1, Heft 2, 202 pp.Google Scholar
  19. J. F. Hayford andW. Bowie (1912),The effect of topography and isostatic compensation upon the intensity of gravity, U.S. Coast and Geodetic Survey, Spec. Publ. no. 10.Google Scholar
  20. W. A. Heiskanen andF. A. Vening Meinesz (1958),The Earth and its Gravity Field, McGraw-Hill Comp., Inc., New York, 470 pp.Google Scholar
  21. P. E. Holopainen (1947),On the gravity field and the isostatic structure of the earth's crust in the east Alps, Publ. Isos. Inst. IAG Helsinki, no. 16.Google Scholar
  22. H.-G. Kahle, E. Klingele, R. Egloff, andSt. Mueller (1974),A crustal section across the Swiss Alps based on gravity and seismic data, Abstract, 2nd EGS meeting, Trieste.Google Scholar
  23. H.-G. Kahle, E. Klingele, andSt. Mueller (1975),Zur Bedeutung der Schwerereduktion bei der Bestimmung der Figur und Massenverteilung der Erde, Schweiz. Z. f. Vermessung, Photogrammetrie und Kulturtechnik, Fachheft III/IV, 157–162.Google Scholar
  24. E. Klingele (1972),Contribution à l'étude gravimétrique de la Suisse Romande et des régions avoisinantes, Beiträge zur Geologie der Schweiz, Serie Geophysik, no. 15. Kümmerly & Frey, Bern, 94 pp.Google Scholar
  25. E. Klingele (1974a),Report to the Swiss National Fund on the project ‘The new Swiss gravity map,’ Zürich, 23 pp. (unpublished).Google Scholar
  26. E. Klingele (1974b),Sur quelques abaques destinées aux corrections topographiques très proche en gravimétrie, unpublished manuscript, 20 pp.Google Scholar
  27. K. Lemcke, U. P. Buechi, andG. Wiener (1968),Einige Ergebnisse der Erdölexploration auf die mittelländische Molasse der Zentralschweiz, Bull. Verh. Schweiz. Petrol.-Geol. u.-Ing.35, no. 87, 15–34.Google Scholar
  28. J. Lohr (1967),Die seismischen Geschwindigkeiten in der Ostschweiz, Bull. Verh. Schweiz. Petrol.-Geol. u.-Ing.34, no. 85, 29–38.Google Scholar
  29. J. Makris (1971),Aufbau der Kruste in den Ostalpen aus Schweremessungen und die Ergebnisse der Refraktionsseismik, Hamburger Geophysikalische Einzelschriften, Heft 15. Walter de Gruyter & Co., Berlin, 65 pp.Google Scholar
  30. R. Meissner andU. Vetter (1974),The northern end of the Rhinegraben: mantle rise, structure, and recent tectonic activity. In: J. H. Illies and K. Fuchs (eds.):Approaches to taphrogenesis, Schweizerbart, Stuttgart, 236–243.Google Scholar
  31. St. Mueller andM. Talwani (1971),A crustal section across the eastern Alps based on gravity and seismic refraction data, Pure and Applied Geophysics (Pageoph)85, 226–239.Google Scholar
  32. St. Mueller andL. Rybach (1974),Crustal Dynamics in the central part of the Rhinegraben. In:Approaches to taphrogenesis, Schweizerbart, Stuttgart, 379–388.Google Scholar
  33. Th. Niethammer (1921),Die Schwerebestimmung der Schweizerischen Geodätischen Kommission und ihre Ergebnisse, Verh. schweiz. natf. Ges., Schaffhausen, 15 pp.Google Scholar
  34. D. Plouff (1965),Digital terrain corrections based on geographic coordinates, Abstract, 36th meeting of the Soc. Exploration Geophysicists.Google Scholar
  35. J. H. Pratt (1855),On the attraction of the Himalaya mountains and of the elevated regions beyond upon the plumb line in India, Phil. Trans. Roy. Soc. (London), Series B145, 53 pp.Google Scholar
  36. Rhinegraben Research Group for Explosion Seismology (1974),The Rhinegraben rift system: deep structure and tectonic features; the 1972 seismic refraction experiment in the Rhinegraben-first results. In: J. H. Illies and K. Fuchs (eds.):Approaches to taphrogenesis, Schweizerbart, Stuttgart, 122–137.Google Scholar
  37. E. Salonen (1933),Ueber die Erdkrustendicke und die isostatische Kompensation in den Schweizer Alpen, Annales academicae scientiarum fennicae, Ser. A, Band 37, Helsinki.Google Scholar
  38. J. P. Schaer andF. Jenrichard (1974),Mouvements verticaux anciens et actuels dans les Alpes suisses, Eclogae Geologicae Helvetiae67, no. 1, 101–119.Google Scholar
  39. D. Werner (1975),Probleme der Geothermik am Beispiel des Rheingrabens, Diss., Univ. Karlsruhe, 170 pp.Google Scholar
  40. D. Werner andH.-G. Kahle (1976),Thermik und Schwere im Rheingraben (abstract), 36th Annual meeting of the ‘Deutsche Geophysikalische Gesellschaft,’ Bochum.Google Scholar
  41. G. P. Woollard (1975),Regional changes in gravity and their relation to crustal parameters, paper presented at the 7th meeting of the Int. Gravity Comm., Paris, 2–6 Sept. 1974. Bureau Gravimétrique Int., Bull. d'Inform.36, Sect. I, 106–110.Google Scholar

Copyright information

© Birkhäuser Verlag 1976

Authors and Affiliations

  • H. G. Kahle
  • E. Klingele
  • St. Mueller
  • R. Egloff
    • 1
  1. 1.Institut für GeophysikETH-HönggerbergZürichSwitzerland

Personalised recommendations