pure and applied geophysics

, Volume 126, Issue 1, pp 103–121 | Cite as

Instability of plane parallel shear flow (toward a mechanistic picture of how it works)

  • Richard S. Lindzen


This paper reviews work done over the last twelve years on wave overreflection in shear flows, and on the development of a mechanical picture of how overreflection and instability work. It is argued that the wave geometry of a flow configuration is the primary determinant of its stability. It is also argued that the primary mechanism for wave amplification is the Orr mechanism.

Key Words

instability overreflection Orr mechanism wave-mean flow interaction Orr-Sommerfeld problem shear instability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boyd, J. P. (1983),The continuous spectrum of linear Couette flow with the beta effect. J. Atmos. Sci.40, 2304–2308.Google Scholar
  2. Charney, J. G. andStern, M. E. (1962),On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci.19, 169–172.Google Scholar
  3. Craik, A. D. D. Wave Interactions and Fluid Flows. (Cambridge University Press, 1985) 322 pp.Google Scholar
  4. Drazin, P. G. andReid, W. H. Hydrodynamic Instability. (Cambridge University Press, 1981) 527 pp.Google Scholar
  5. Eliassen, A. andPalm E., (1961),On the transfer of energy in stationary mountain waves. Geofys. Publ.22, 1–23.Google Scholar
  6. Farrell, B. (1987),On developing disturbances in shear. J. Atmos. Sci., in press.Google Scholar
  7. Grosch, C. E. andSalwen, H. (1968),The stability of steady and time dependent plane Poiseuille flow. J. Fluid Mech.34, 177–205.Google Scholar
  8. Heisenberg, W. (1924),Über stabilität und Turbulenz von Flüssigkeitsströmen. Ann. Phys. Lpz.74, 577–627.Google Scholar
  9. Holton, J. R. An Introduction to Dynamic Meteorology (second edition) (Academic Press, New York, 1979) 391 pp.Google Scholar
  10. Jones, W. L. (1968),Reflection and stability of waves in stably stratified fluids with shear flow. A numerical study. J. Fluid Mech.34, 609–624.Google Scholar
  11. Knobloch, E. (1984),On the stability of stratified plane Couette flow Geophys. and Astrophys. Fl. Dyn.29, 105–116.Google Scholar
  12. Lin, C. C. The Theory of Hydrodynamic Instability. (Cambridge University Press, 1955) 155 pp.Google Scholar
  13. Lindzen, R. S. (1974),Stability of a Helmholtz velocity profile in a continuously stratified infinite Boussinesq fluid applications to clear air turbulence. J. Atmos. Sci.31, 1507–1514.Google Scholar
  14. Lindzen, R. S. andBarker, J. W. (1985)Instability and wave overreflection in stably stratified shear flow. J. Fluid Mech.151, 189–217.Google Scholar
  15. Lindzen, R. S., Farrell, B. andTung, K. K. (1980),The concept of wave overreflection and its application to baroclinic instability. J. Atmos. Sci.37, 44–63.Google Scholar
  16. Lindzen, R. S. andRambaldi, S. (1986),A study of overreflection in viscous Poiseuille flow. J. Fluid Mech.165, 355–372.Google Scholar
  17. Lindzen, R. S. andRosenthal, A. J. (1976),On the instability of Helmholtz velocity profiles in stably stratified fluids when a lower boundary is present. J. Geophys. Res.81, 1561–1571.Google Scholar
  18. Lindzen, R. S. andRosenthal, A. J. (1981),A WKB asymptotic analysis of baroclinic instability. J. Atmos. Sci.38, 619–629.Google Scholar
  19. Lindzen, R. S. andRosenthal, A. J. (1983),Instabilities in a stratified fluid having one critical level: Part III. Kelvin-Helmholtz instabilities as overreflected waves. J. Atmos. Sci.40, 530–542.Google Scholar
  20. Lindzen, R. S. andTung, K. K. (1978),Wave overreflection and shear instability. J. Atmos. Sci.35, 1626–1632.Google Scholar
  21. Lorentz, E. N. The Nature and Theory of the General Circulation of the Atmosphere (W.M.O. Publ.) 218 pp.Google Scholar
  22. McIntyre, M. E. andWeissman, M. (1978),On radiating instabilities and resonant overreflection, J. Atmos. Sci.35, 1190–1196.Google Scholar
  23. Miller, R. andLindzen, R. S. (1987),Instability and wave overreflection in viscous stratified shear flows, Geophys. and Astrophys. Fl. Dyn., (in press).Google Scholar
  24. Orr, W. M. F. (1907),The stability or instability of the steady motions of a perfect liquid and of a viscous liquid, Proc. Roy. Irish Acad.A27, 9–138.Google Scholar
  25. Pedlosky, J. Geophysical Fluid Dynamics. (Springer Verlag, New York, 1979) 624 pp.Google Scholar
  26. Phillips, O. M. The Dynamics of the Upper Ocean. (Cambridge University Press, 1969) 262 pp. (see section 5.5).Google Scholar
  27. Platzman, G. W. (1952),The increase and decrease of mean-flow energy in large-scale horizontal flow in the atmosphere, J. Met.9, 347–358.Google Scholar
  28. Rosenthal, A. J. andLindzen, R. S. (1983),Instabilities in a stratified fluid having one critical level: Part II. Explanation of gravity wave instability as overrflected waves. J. Atmos. Sci.40, 521–529.Google Scholar

Copyright information

© Birkhäuser Verlag 1988

Authors and Affiliations

  • Richard S. Lindzen
    • 1
  1. 1.54-1416 Massachusetts Institute of TechnologyCenter for Meteorology and Physical OceanographyCambridgeUSA

Personalised recommendations