Advertisement

pure and applied geophysics

, Volume 137, Issue 1–2, pp 1–33 | Cite as

An observational study of energy balance in the atmospheric lunar tide

  • George W. Platzman
Article

Abstract

Analyses of satellite orbit-perturbation and altimeter data have been used in the past few years to evaluate sea-tide dissipation. A value of about 2.5 TW for the M2 tide is emerging from this work, which for the first time has placed our knowledge of sea-tide energy balance on a firm observational basis. A comparable improvement for the air tide is not yet possible, but an energy-balance estimate of M2 air-tide dissipation is made here from the best available spherical-harmonic analysis of the lunar barometric tide, namely that of 1969 byHaurwitz andCowley. Full account is taken of the flux of tide energy from the ocean, by means of sea-tide elevation derived from satellite data, and effects of sea-tide attraction and load are included. The result of this observational assessment is an M2 air-tide dissipation of about 10 GW maintained almost entirely, on the average, by the sea tide.

Key words

Atmospheric tide lunar tide tidal dissipation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accad, Y., andPekeris, C. L. (1978),Solution of the Tidal Equations for the M 2 and S2 in the World Oceans from a Knowledge of the Tidal Potential Alone, Phil. Trans. Royal Soc. LondonA290, 235–266.Google Scholar
  2. Agnew, D. C., andFarrell, W. E. (1978),Self-consistent Equilibrium Ocean Tides, Geophys. J. Royal Astron. Soc.55, 171–181.Google Scholar
  3. Cartwright, D. E., andEdden, Anne C. (1973),Corrected Tables of Tidal Harmonics, Geophys. J. Royal Astron. Soc.33, 253–264.Google Scholar
  4. Cartwright, D. E., andRay, R. D. (1990),Oceanic Tides from Geosat Altimetry, J. Geophys. Res.95, 3069–3090.Google Scholar
  5. Cartwright, D. E., Ray, R. D., andSanchez, B. V.,Oceanic Tide Maps and Spherical Harmonic Coefficients from Geosat Altimetry, NASA Tech. Mem. 104544 (Goddard Space Flight Center Greenbelt, MD 1991).Google Scholar
  6. Cartwright, D. E., andTayler, R. J. (1971),New Computations of the Tide-generating Potential, Geophys. J. Royal Astron. Soc.23, 45–74.Google Scholar
  7. Cheng, M. K., Shum, C. K., Eanes, R. J., Schutz, B. E., andTapley, B. D. (1990),Long-period Perturbations in Starlette Orbit and Tide Solution, J. Geophys. Res.95, 8723–8736.Google Scholar
  8. Chovitz, B. H. (1981), Modern Geodetic Earth Reference Models., Eos, Trans. Amer. Geophys. Union62 65–67.Google Scholar
  9. Dahlen, F. A. (1976),The Passive Influence of the Oceans upon the Rotation of the Earth, Geophys. J. Royal Astron. Soc.46, 363–406.Google Scholar
  10. Gill, A. E.,Atmosphere—Ocean Dynamics (Academic Press, New York 1982).Google Scholar
  11. Groves, G. V., andForbes, J. M. (1984),Equinox Tidal Heating of the Upper Atmosphere, Plan. Space Sci.32, 447–456.Google Scholar
  12. Haurwitz, B., andCowley, Anne D. (1973),The Diurnal and Semidiurnal Barometric Oscillations, Global Distribution and Annual Variation, Pure Appl. Geophys.102, 193–222.Google Scholar
  13. Haurwitz, B., andCowley, Anne D. (1969),The Lunar Barometric Tide its Global Distribution and Annual Variation, Pure Appl. Geophys.77, 122–150.Google Scholar
  14. Hendershott, M. C. (1972),The Effects of Solid Earth Deformation on Global Ocean Tides, Geophys. J. Royal Astron. Soc.29, 389–402.Google Scholar
  15. Hendershott, M. C. (1977),Numerical models of ocean tides InThe Sea vol. 6 (eds. E. D. Goldberg et al.) (Wiley, New York 1977) pp. 47–95.Google Scholar
  16. Hollingsworth, A. (1971),The Effect of Ocean and Earth Tides on the Semidiurnal Lunar Air Tide, J. Atmos. Sci.28, 1021–1044.Google Scholar
  17. Jeffreys, H. The Earth, 6th edition (University Press, Cambridge 1976).Google Scholar
  18. Kagan, B. A. (1981),Dissipation of Gravitational Tidal Energy in the Atmosphere, Izvestiya, Atmos. Oceanic Phys.17, 896–898.Google Scholar
  19. Kagan, B. A., andShkutova, N. V. (1985),On the Effect of Ocean Tides on Gravitational Tides in the Atmosphere Oceanology,25, 146–150.Google Scholar
  20. Lambeck, K. (1977),Tidal Dissipation in the Oceans: Astronomical Geophysical and Oceanographic Consequences, Phil Trans. Royal Soc LondonA 287, 545–595.Google Scholar
  21. Lindzen, R. S., andHong, S. S. (1974),Effects of Mean Winds and Horizontal Temperature Gradients on Solar and Lunar Semidiurnal Tides in the Atmosphere, J. Atmos. Sci.31, 1421–1446.Google Scholar
  22. Laplace, P. S.,Traité de Mécanique Céleste, tome second (Crapelet, Paris 1799).Google Scholar
  23. Marchuk, G. I., andKagan, B. A.,Ocean Tides, (Pergamon, New York 1984).Google Scholar
  24. Marsh, J. G., andCollaborators (1990),The GEM-T2 Gravitational Model, J. Geophys. Res.95, 22043–22071.Google Scholar
  25. Parke, M. E. (1982),O1, P1, N2 Models of the Global Ocean Tide on an Elastic Earth plus Surface Potential and Spherical Harmonic Decompositions for M2, S2, and K1, Mar. Geodesy.6, 35–81.Google Scholar
  26. Platzman, G. W. (1984),Planetary Energy Balance for Tidal Dissipation, Rev. Geophys. Space Phys.22, 73–84.Google Scholar
  27. Platzman, G. W. (1985),The Role of Earth Tides in the Balance of Tidal Energy, J. Geophys. Res.90, 1789–1793.Google Scholar
  28. Platzman G. W. (1988),The Atmospheric Tide as a Continous Spectrum: Lunar Semidiurnal Tide in Surface Pressure Meteorol. Atmos. Phys.38, 70–88.Google Scholar
  29. Ray, R. D., andSanchez, B. V. Radial Deformation of the Earth by Oceanic Tidal Loading, NASA Tech. Mem. 100743 (Goddard Space Flight Center, Greenbelt, MD 1989).Google Scholar
  30. Sawada, R. (1965),The Possible Effect of Oceans on the Atmospheric Lunar Tide J. Atmos. Sci.22, 636–643.Google Scholar
  31. Schwiderski, E. W. (1980),On Charting Global Ocean Tides, Rev. Geophys. Space Phys.18, 243–268.Google Scholar
  32. Wahr J. M. (1981),Body Tides on an Elliptical, Rotating, Elastic and Oceanless Earth, Geophys. J. Royal Astron. Soc.64, 677–703.Google Scholar

Copyright information

© Birkhäuser Verlag 1991

Authors and Affiliations

  • George W. Platzman
    • 1
  1. 1.Department of the Geophysical SciencesThe University of ChicagoChicagoUSA

Personalised recommendations