pure and applied geophysics

, Volume 139, Issue 1, pp 17–57 | Cite as

Use of the mantle magnitudeM m for the reassessment of the moment of historical earthquakes

I: Shallow events
  • Emile A. Okal


The mantle magnitudeM m is used on a dataset of more than 180 wavetrains from 44 large shallow historical earthquakes to reassess their moments, which in many cases had been previously estimated only on the basis of the earthquake's rupture area. We provide 27 new or revised values ofMo, based on the spectral amplitudes of surface waves recorded at a number of stations, principally Uppsala and Pasadena. Among them, and most significantly, we document a large low-frequency component to the source of the 1923 Kanto earthquake: the low-frequency seismic moment is 2.9×1028 dyn-cm, in accord with geodetic observations. On the other hand, we revise downwards the seismic moment of the 1906 Ecuador event, which did not exceed 6×1028 dyn-cm.

Finally, the study of the 1960 Chilean and 1964 Alaskan earthquakes whose exceptionally large moments are properly retrieved throughM m measurements, serves proof that this approach performs flawlessly even for the very greatest earthquakes, and is therefore successful in its goal to avoid the saturation effects plaguing any magnitude scale measured at a fixed period.

Key words

Historical earthquakes magnitudes mantle waves tsunamis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, K. (1972),Mechanisms and Tectonic Implications of the 1966 and 1970 Peru Earthquakes, Phys. Earth Planet. Inter.5, 367–379.Google Scholar
  2. Abe, K. (1973),Tsunami and Mechanism of Great Earthquakes, Phys. Earth Planet. Inter.7, 143–153.Google Scholar
  3. Abe, K. (1975),Reliable Estimation of the Seismic Moment of Large Earthquakes, J. Phys. Earth.23, 381–390.Google Scholar
  4. Abe, K. (1981),Physical Size of Tsunamigenic Earthquakes of the Northwestern Pacific, Phys. Earth Planet. Inter.27, 194–205.Google Scholar
  5. Abe, K.,A new scale of tsunami magnitude, M 1. InTsunamis—Their Science and Engineering (eds.) Iida, K., and Iwasaki, T.) (Terrapub, Tokyo 1983) pp. 91–101.Google Scholar
  6. Abe, K. andKanamori, H. (1980),Magnitudes of Great Shallow Earthquakes from 1953 to 1977, Tectonophys.62, 191–203.Google Scholar
  7. Beck, S. L., andChristensen, D. H. (1991),Rupture Process of the February 4,1965, Rat Island Earthquake, J. Geophys. Res.96, 2205–2221.Google Scholar
  8. Beck, S. L., andRuff, L. J. (1984),The Rupture Process for the Great 1979 Colombia Earthquake: Evidence for the Asperity Model, J. Geophys. Res.89, 9281–9291.Google Scholar
  9. Benioff, H. (1935),A Linear Strain Seismograph, Bull. Seismol. Soc. Am.25, 283–309.Google Scholar
  10. Ben-Menahem, A. (1978),Source Mechanism of the 1906 San Francisco Earthquake, Phys. Earth Planet. Inter.17, 163–181.Google Scholar
  11. Ben-Menahem, A., andToksöz, M. N. (1963),Source Mechanism from Spectra of Long-period Seismic Surface Waves: 3. The Alaska Earthquake of July 10, 1958, Bull. Seismol. Soc. Am.53, 905–919.Google Scholar
  12. Ben-Menahem, A., Aboudi, E., andSchild, R. (1974),The Source of the Great Assam Earthquake—An Interplate Wedge Motion, Phys. Earth Planet. Inter.9, 265–289.Google Scholar
  13. Brune, J. N., andEngen, G. R. (1969),Excitation of Mantle Love Waves and Definition of Mantle Wave Magnitude, Bull. Seismol. Soc. Am.59, 923–933.Google Scholar
  14. Chen, W.-P., andMolnar, P. (1977),Seismic Moments of Major Earthquakes and the Average Rate of Slip in Central Asia, J. Geophys. Res.82, 2945–2969.Google Scholar
  15. Cifuentes, I. L., andSilver, P. G. (1989),Low-frequency Source Characteristics of the Great 1960 Chilean Earthquake, J. Geophys. Res.94, 643–663.Google Scholar
  16. Denham, D.,Summary of Earthquake Focal Mechanisms for the Western Pacific-Indonesian Region, 1929–1973, World Data Center A, Rept.SE-3 (U.S. Dept. Commerce, Boulder 1977) 110 pp.Google Scholar
  17. Dewey, J. W., andSpence, W. (1979),Seismic Gaps and Source Zones of Recent Large Earthquakes in Coastal Peru, Pure and Appl Geophys.117, 1148–1171.Google Scholar
  18. Dziewonski, A. M., Franzen, J. E., andWoodhouse, J. H. (1985),Centroid Moment-tensor Solutions for January–March 1985, Phys. Earth Planet. Inter.40, 249–258.Google Scholar
  19. Dziewonski, A. M., Franzen, J. E., andWoodhouse, J. H. (1986),Centroid Moment-tensor Solutions for July–September 1985, Phys. Earth Planet. Inter.42, 205–214.Google Scholar
  20. Dziewonski, A. M., Ekström, G., Franzen, J. E., andWoodhouse, J. H. (1987a),Global Seismicity of 1977; Centroid Moment Tensor Solutions for 471 Earthquakes, Phys. Earth Planet. Inter.45, 11–36.Google Scholar
  21. Dziewonski, A. M., Ekström, G., Franzen, J. E., andWoodhouse, J. H. (1987b),Global Seismicity of 1978; Centroid Moment Tensor Solutions for 512 Earthquakes, Phys. Earth Planet. Inter.46, 316–342.Google Scholar
  22. Dziewonski, A. M., Ekström, G., Franzen, J. E., andWoodhouse, J. H. (1987c).Global Seismicity of 1979; Centroid Moment Tensor Solutions for 524 Earthquakes, Phys. Earth Planet. Inter.48, 18–46.Google Scholar
  23. Dziewonski, A. M., Ekström, G., Franzen, J. E., andWoodhouse, J. H. (1987d),Centroid Moment-tensor Solutions for April–June 1986, Phys. Earth Planet. Inter.45, 229–239.Google Scholar
  24. Dziewonski, A. M., Ekström, G., Franzen, J. E., andWoodhouse, J. H. (1988),Global Seismicity of 1981; Centroid Moment Tensor Solutions for 542 Earthquakes, Phys. Earth Planet. Inter.50, 155–182.Google Scholar
  25. Dziewonski, A. M., Ekström, G., Woodhouse, J. H., andZwart, G. (1989a),Centroid Moment Tensor Solutions for April–June, 1988, Phys. Earth Planet. Inter.54, 199–209.Google Scholar
  26. Dziewonski, A. M., Ekström, G., Woodhouse, J. H., andZwart, G. (1989b),Centroid Moment Tensor Solutions for July–September 1988, Earth Planet. Inter.56, 165–180.Google Scholar
  27. Dziewonski, A. M., Ekström, G., Woodhouse, J. H., andZwart, G. (1990),Centroid Moment Tensor Solutions for April–June, 1989, Phys. Earth Planet. Inter.60, 243–253.Google Scholar
  28. Espindola, J. M., Singh, S. K., Yamamoto, Y., andHavskov, J. (1981),Seismic Moments of Large Mexican Subduction Earthquakes Since 1907, EOS, Trans. Amer. Geophys. Un.62, 948 [abstract].Google Scholar
  29. Fukao, Y., andFurumoto, M. (1979),Stress Drops, Wave Spectra and Recurrence Intervals of Great Earthquakes—Implications for the Etorofu Earthquake of 1958, November 6, Geophys. J. Roy. Astr. Soc.57, 23–40.Google Scholar
  30. Furumoto, M., andFukao, Y. (1976),Seismic Moment of Great Deep Shocks, Phys. Earth Planet. Inter.11, 352–357.Google Scholar
  31. Gilbert, J. F., andDziewonski, A. M. (1975),An Application of Normal Mode Theory to the Retrieval of Structural Parameters and Source Mechanisms from Seismic Spectra, Phil. Trans. Roy. Soc. London278A, 187–269.Google Scholar
  32. Gilman, R. W. (1960),Report on Some Experimental Long-period Systems, Bull. Seismol. Soc. Am.50, 553–559.Google Scholar
  33. Golitsyn, Prince, B. B. (1908),Die electromagnetische Registriermethode, C. R. Séances Comm. Sismique Perm. Acad. Impér. Sci. St Pétersbourg3 (1), 1–106.Google Scholar
  34. Gutenberg, B., andRichter, C. F.,Seismicity of the Earth (Princeton University Press, Princeton, N.J. 1954) 310 pp.Google Scholar
  35. Iida, K., Fox, D. C., andPararas-Carayanis, G.,Preliminary Catalogue of Tsunamis Occurring in the Pacific Ocean, Data Rept.5 (Hawaii Inst. Geophys., Univ. Hawaii, Honolulu 1967).Google Scholar
  36. Isacks, B., andMolnar, P. (1971),Distribution of Stress in the Descending Lithosphere from a Global Survey of Focal-mechanism Solutions of Mantle Earthquakes, Revs. Geophys. Space Phys.9, 103–174.Google Scholar
  37. Kanamori, H. (1970a),Synthesis of Long-period Surface Waves and its Application to Earthquake Source Studies—Kurile Islands Earthquake of October 13, 1963, J. Geophys. Res.75, 5011–5027.Google Scholar
  38. Kanamori, H. (1970b),The Alaska Earthquake of 1964: Radiation of Long-period Surface Waves and Source Mechanism, J. Geophys. Res.75, 5029–5040.Google Scholar
  39. Kanamori, H. (1971a),Faulting of the Great-Kanto Earthquake of 1923 as Revealed by Seismological Data, Bull, Earthq. Res. Inst. Tokyo Univ.49, 13–18.Google Scholar
  40. Kanamori, H. (1971b),Seismological Evidence for a Lithospheric Normal Faulting—the Sanriku Earthquake of 1933, Phys. Earth Planet. Inter.4, 289–300.Google Scholar
  41. Kanamori, H. (1972a),Mechanism of Tsunami Earthquakes, Phys. Earth Planet. Inter.6, 346–359.Google Scholar
  42. Kanamori, H. (1972b),Tectonic Implications of the 1944 Tonankai and 1946 Nankaido Earthquakes, Phys. Earth Planet. Inter.5, 129–139.Google Scholar
  43. Kanamori, H. (1976),Re-examination of the Earth's Free Oscillations Excited by the Kamchatka Earthquake of November 4, 1952, Phys. Earth Planet. Inter.11, 216–226.Google Scholar
  44. Kanamori, H. (1977),The Energy Release in Great Earthquakes, J. Geophys. Res.82, 2981–2987.Google Scholar
  45. Kanamori, H. (1985),Non-double-couple Seismic Source, Proc. XXIIIrd Gen. Assembl. Intl. Assoc. Seismol. Phys. Earth Inter., Tokyo, 1985, p. 425 [abstract].Google Scholar
  46. Kanamori, H., andAnderson, D. L. (1975),Amplitude of the Earth's Free Oscillations and Long-period Characteristics of the Earthquake Source, J. Geophys. Res.80, 1075–1078.Google Scholar
  47. Kanamori, H., andCipar, J. J. (1974),Focal Process of the Great Chilean Earthquake May 22, 1960 Phys. Earth Planet. Inter.9, 128–136.Google Scholar
  48. Kanamori, H., andGiven, J. W. (1981),Use of Long-period Surface Waves for Rapid Determination of Earthquake Source Parameters, Phys. Earth Planet. Inter.27, 8–31.Google Scholar
  49. Kelleher, J. A. (1972),Rupture Zones of Large South American Earthquakes and Some Predictions, J. Geophys. Res.77, 2087–2103.Google Scholar
  50. Kulhánek, O.,The status, importance and use of historical seismograms in Sweden. InHistorical Seismograms and Earthquakes of the World (eds. Lee, W. H. K., Meyers, H., and Shimazaki, K.) (Academic Press 1987) pp. 64–69.Google Scholar
  51. Lane, F. D., andBoyd, T. M. (1990),A Simulated Annealing Approach to the Inversion of Surface Wave Directivities: Application to the 1957 Aleutian Islands Earthquake, EOS, Trans. Amer. Geophys. Un.71, 1468 [abstract].Google Scholar
  52. Lundgren, P. R., Okal, E. A., andWiens, D. A. (1989),Rupture Characteristics of the 1982 Tonga and 1986 Kermadec Earthquakes, J. Geophys. Res.94, 15521–15539.Google Scholar
  53. McComb, H. E., andWest, C. J. (1931),List of Seismological Stations of the World, 2nd Ed. (Natl. Res. Council and Natl. Acad. Sci., Washington, D.C. 1931), 119 pp.Google Scholar
  54. Mendiguren, J. A. (1973),Identification of Free Oscillation Spectral Peaks for 1970 July 31, Colombian Deep Shock, Using the Excitation Criterion, Geophys. J. Roy. Astr. Soc.33, 281–321.Google Scholar
  55. Nishenko, S. P. (1991),Circum-Pacific Seismic Potential, 1989–1999, Pure and Appl. Geophys.135, 167–259.Google Scholar
  56. Okal, E. A. (1976),A Surface-wave Investigation of the Rupture Mechanism of the Gobi-Altai (December 4, 1957) Earthquake, Phys. Earth Planet. Inter.12, 319–328.Google Scholar
  57. Okal, E. A. (1977),The July 9, and 23, 1905 Mongolian Earthquakes: A Surface Wave Investigation, Earth Plan. Sci. Lett.34, 326–331.Google Scholar
  58. Okal, E. A. (1988),Seismic Parameters Controlling Far-field Tsunami Amplitudes: A Review, Natural Hazards1, 67–96.Google Scholar
  59. Okal, E. A. (1989),A Theoretical Discussion of Time-domain Magnitudes: The Prague Formula for M, and the Mantle Magnitude M m, J. Geophys. Res.94, 4194–4204.Google Scholar
  60. Okal, E. A. (1992),Use of the Mantle Magnitude M m for the Reassessment of the Seismic Moment of Historical Earthquakes. II. Intermediate and Deep Events, Pure and Appl. Geophys., this issue.Google Scholar
  61. Okal, E. A., andStein, S. (1987),The 1942 Southwest Indian Ocean Ridge Earthquake: Largest Ever Recorded on an Oceanic Transform, Geophys. Res. Letts.14, 147–150.Google Scholar
  62. Okal, E. A., andTalandier, J. (1987),M m:Theory of a Variable-period Mantle Magnitude, Geophys. Res. Letts.14, 836–839.Google Scholar
  63. Okal, E. A., andTalandier, J. (1989),M m:A Variable Period Mantle Magnitude, J. Geophys. Res.94, 4169–4193.Google Scholar
  64. Okal, E. A., andTalandier, J. (1990),M m:Extension to Love Waves of the Concept of a Variable-period Mantle Magnitude, Pure and Appl. Geophys.134, 355–384.Google Scholar
  65. Okal, E. A., andTalandier, J. (1991),Single-station Estimates of the Seismic Moment of the 1960 Chilean and 1964 Alaskan Earthquakes, Using the Mantle Magnitude M m, Pure and Appl. Geophys.136, 103–126.Google Scholar
  66. Pelayo, A. M., andWiens, D. A. (1990),The November 20, 1960 Peru Tsunami Earthquake: Source Mechanism of a Slow Event, Geophys. Res. Letts.17, 661–664.Google Scholar
  67. Reymond, D., Hyvernaud, O., andTalandier, J. (1991),Automatic Detection, Location and Quantification of Earthquakes: Application to Tsunami Warning, Pure and Appl. Geophys.135, 361–382.Google Scholar
  68. Ruff, L. J., andKanamori, H. (1980),Seimicity and the Subduction Process, Phys. Earth Planet. Inter.23, 240–252.Google Scholar
  69. Ruff, L. J., Kanamori, H., andSykes, L. R. (1985),The 1957 Great Aleutian Earthquate, EOS, Trans. Amer. Geophys. Un.66, 298 [abstract].Google Scholar
  70. Singh, S. K., Dominguez, T., Castro, R., andRodriguez, M. (1984),P Waveform of Large, Shallow Earthquakes along the Mexican Subduction Zone, Bull. Seismol. Soc. Am.74, 2135–2156.Google Scholar
  71. Stauder, W. J. (1960),The Alska Earthquake of July 10, 1958: Seismic Studies, Bull. Seismol. Soc. Am.50, 293–322.Google Scholar
  72. Stauder, W. J. (1968),Tensional Character of Earthquake Foci beneath the Aleutians Trench in Relation to Sea-floor Spreading, J. Geophys. Res.73, 7693–7701.Google Scholar
  73. Solov'ev, S. L., andGo, Ch. N. (1984),Catalogue of Tsunamis of the Pacific Ocean (Nauka, Moscow, 1975) [English Translation: Can. Transl. Fish. Aquat. Sci.,5077–5078, 2 vol., 724 pp. Sidney, B. C. 1984].Google Scholar
  74. Solov'ev, S. L., Go, Ch. N. andKim, Kh. S., (1986),Katalog Tsunami v Tikhom Okeane, 1969–1982 gg. (Akad. Nauk SSSR, Moscow 1986), 164 pp. [in Russian].Google Scholar
  75. Talandier, J., andOkal, E. A. (1989),An Algorithm for Automated Tsunami Warning in French Polynesia, Based on Mantle Magnitudes, Bull. Seismol. Soc. Am.79, 1177–1193.Google Scholar
  76. Tocher, D. (1960),The Alaska Earthquake of July 10, 1958: Movement on the Fairweather Fault and Field Investigation of Southern Epicentral Region, Bull. Seismol. Soc. Am.50, 267–292.Google Scholar
  77. Umeda, Y., andIto, K.,Microfilming of historical seismograms at Abuyama Seismological Observatory, Kyoto University. InHistorical Seismograms and Earthquakes of the World (eds. Lee, W. H. K., Meyers, H., and Shimazaki, K.) (Academic Press 1987) pp. 439–444.Google Scholar
  78. Uyeda, S., andKanamori, H. (1979),Back-arc Opening and the Mode of Subduction, J. Geophys. Res.84, 1049–1061.Google Scholar
  79. Wiechert, E. (1904),Ein astatisches Pendel hoher Empfindlichkeit zur mechanischen Registrierung von Erdbeben, Beitr. Geophys.6, 435–450.Google Scholar
  80. Woods, M. T., andOkal, E. A. (1987),Effect of Variable Bathymetry on the Amplitude of Teleseismic Tsunamis: A Ray-tracing Experiment, Geophys. Res. Letts.14, 765–768.Google Scholar
  81. Wu, F. T., andKanamori, H. (1973),Source Mechanism of the February 4, 1965 Rat Island Earthquake, J. Geophys. Res.78, 6082–6092.Google Scholar
  82. Wysession, M. E., Okal, E. A., andMiller, K. L. (1991),Intraplate Seismicity of the Pacific Basin, 1913–1988, Pur and Appl. Geophys.135, 261–359.Google Scholar

Copyright information

© Birkhäuser Verlag 1992

Authors and Affiliations

  • Emile A. Okal
    • 1
  1. 1.Department of Geological SciencesNorthwestern UniversityEvanstonUSA

Personalised recommendations