pure and applied geophysics

, Volume 120, Issue 4, pp 626–641 | Cite as

Impact of coupled perturbations of atmospheric trace gases on Earth's climate and ozone

  • Maria Pia Nicoli
  • Guido Visconti


We have studied the effects on the ozone concentration and surface temperature, of perturbations in the atmospheric content of nitrous oxide, methane, carbon dioxide and chlorofluorocarbons (CFC). The sensitivity study has been carried out with a radiative-convective-photochemical model. The doubling of carbon dioxide concentration has the effect of warming the troposphere and cooling the stratosphere. As a result of this cooling, the change of ozone columnar density produced by 10 ppb of chlorine amount to 9.3% as compared to −10.9% obtained without temperature feedback. Perturbation in nitrous oxide correspond to an increase in NO x of the stratosphere with consequent ozone reduction while doubling the methane concentration correspond to a slight increase in columnar density. The effect of the increased methane concentration in the stratosphere contributes to reduce the effect of CFC due to the enhanced formation of HCl. The perturbation of these two minor constituents appreciably increase the greenhouse effect to 2.30 from 1.67°, obtained when carbon dioxide alone is considered.

Key words

Climate Ozone Photochemical model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman, M.,Ultraviolet Solar Radiation Related to Mesospheric Processes, inMesospheric Models and Related Experiments (ed. G. Fiocco) (Dordrecht, 1971), p. 149.Google Scholar
  2. Anderson, J. G.,The Measurement of Trace Reactive Species in the Stratosphere: A Review of Recent Results, inCauses and Effects of Stratospheric Ozone Reduction: An Update (National Academy of Sciences, Washington 1982).Google Scholar
  3. Bates, D. R., andHays, P. B. (1967),Atmospheric Nitrous Oxide, Planet, Space Sci.15, 189–197.Google Scholar
  4. Boughner, R. E. (1978),The Effects of Increased Carbon Dioxide Concentrations on Stratospheric Ozone J. Geophys. Res.83, 1326.Google Scholar
  5. Codata Bulletin,An Abridgement of Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Supplement I, n. 45 (Pergamon Press 1982).Google Scholar
  6. Crutzen, P. J. (1978),The Impact of the Chlorocarbon Industry on the Ozone Layer J. Geophys. Res.83, 345–363.Google Scholar
  7. Crutzen, P.J.,Gas-Phase Nitrogen and Methane Chemistry in the Atmosphere, inPhysics and Chemistry of the Upper Atmosphere (ed. B. M. McCormac) (D. Reidel, Hingham, Mass. 1973).Google Scholar
  8. Crutzen, P. J. (1974a),Photochemical Reactions Initiated by and Influencing Ozone in Unpolluted Tropospheric Air, Tellus26, 47–57.Google Scholar
  9. Donner, L., andRamanathan, V. (1980)Methane and Nitroux Oxide: Their Effects on the Terrestrial Climate, J. Atmos. Sci.37, 110–124.Google Scholar
  10. Forlizzi, V., andVisconti, G. (1979),Perturbations in the Composition of the Atmosphere and Temperature Feedback, II Nuoro Cimento.2, 377–396.Google Scholar
  11. Hameed, S., Cess, R. D., andHogan, J. S., (1980),Response of the Global Climate to Changes in Atmospheric Chemical Composition due to Fossil Fuel Burning, J. Geophys. Res.85, 7537–7545.Google Scholar
  12. Hampson, R. F. (1980),Chemical Kinetic and Photochemical Data Sheets for Atmospheric Reactions, Report No. FAA-EE-80-17.Google Scholar
  13. Heimerl, J. (1970),Co 2 Absorption Coefficient 1655-1825 A, J. Geophys. Res.75, 5574–5575.Google Scholar
  14. Hudson, R. D. (1977),Chlorofluoromethanes and the Stratosphere, NASA, Ref. Publ. No. 1010.Google Scholar
  15. Hudson, R. D. (1979),The Stratosphere: Present and Future, NASA, Ref. Publ. No. 1049.Google Scholar
  16. Hunten, D. M. (1975),The Philosophy of One-dimensional Modeling, Fourth Conference on CIAP, U.S. Department of Transportation.Google Scholar
  17. Johnston, H. S., andGraham, R. (1976),Photochemistry of NO x and HNOx Compounds, Can. J. Chem.52,1415–1423.Google Scholar
  18. JPL 79-27 (1979),Chemical Kinetic and Photochemical Data for use in Stratospheric Modelling, Evaluation Number 2, NASA Panel for data evalution, W. De More, Chairman, Jet Propulsion Laboratory, 124 pp.Google Scholar
  19. Lacis, A. A., andHansen, J. E. (1974),A Parameterization for the Absorption of Solar Radiation in the Earth's Atmosphere, J. Atmos. Sci.31, 118–133.CrossRefGoogle Scholar
  20. Luther, F. M., Wuebbles, D. J., andChang, J. S. (1977),Temperature Feedback in a Stratospheric Model, J. geophys. Res.82, 4935–4924.Google Scholar
  21. Manabe, S., andWetherald, R. T. (1967),Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity, J. Atmos. Sci.24, 241–259.Google Scholar
  22. Molina, L. T., Schinke, S. D., andMolina, M. J. (1977),Ultraviolet Absorption Spectrum of Hydrogen Peroxide Vapor, Geophys. Res. Lett.,4, 580–582.Google Scholar
  23. Nicolet, M. (1979),Photodissociation of Nitric Oxide in the Mesosphere and Stratosphere: Simplified Numerical Relations for Atmospheric Model Calculations Geophys. Res. Lett.6, 866–868.Google Scholar
  24. Owens, A. J., Steed, J. M., Filkin, D. L., Miller, C., andJesson, J. D. (1982),The Potential Effects of Increased Methane on Atmospheric Ozone, Geophys. Res. Lett.9, 1105.Google Scholar
  25. Pankert, T., andJohnston, H. (1972),Spectra and Kinetics of the Hydroperoxyl Free Radical in the Gas Phase, J. Chem. Phys.56, 2824–2838.Google Scholar
  26. Penner, J. E.,Increases in CO 2 and Chlorofluoromethanes: Coupled Effects on Stratospheric Ozone, inProceedings of the Quadrennial International Ozone Symposium, Vol. 2 (ed. J. London), (IAMAP, Boulder, Colorado, USA 1980).Google Scholar
  27. Ramanathan, V. (1976),Radiative Transfer Within the Earth's Troposphere and Stratosphere: A Simplified Radiative-Convective Model, J. Atmos. Sci.33, 1330–1346.Google Scholar
  28. Robbins, D. E. (1976),Photodissociation of Methyl Chloride and Methylbromide in the Atmosphere, Geophys. Res. Lett.3, 213–216.Google Scholar
  29. Sasamori, T. (1968),The Radiative Cooling Calculation for Application to General Circulation Experiments, J. Appl. Meteor.7, 721–729.Google Scholar
  30. Schultz, E. Holland, A., andMarmo, F. (1963),Planetary Aeronomy 8, a Cogeries of Absorption Cross-sections for Wavelength Less Than 3000 Å, NASA Rep. Cr-15.Google Scholar
  31. Wang, W. C., Yong, Y. L., Lacis, A. A., Mo, T., andHansen, J. E. (1976),Greenhouse Effects Due to Man-made Perturbations of Trace Gases, Science194, 685–690.Google Scholar
  32. Wang, W.C., Ko, M. K. W., Sze, N.D., andRyan, P. B.,Coupled Effects of Atmospheric N 2O, CH4, CFMS and O3 on the Earth's Climate, inProceedings of the Quadrennial International Ozone Symposium, Vol. 2 (ed. J. London), (IAMAP, Boulder, Colorado, USA 1980).Google Scholar
  33. Wang, W.C., Ryan, P. B., Ko, M. K. W., Sze, N. D., andHutton, F. M. (1982),Influence of Infrared Absorption Band Treatments on the Calculated O 3 Increase due to Increased CO2.Google Scholar
  34. Wofsy, S. C. (1972),Atmospheric CH 4, CO, and CO2, J. geophys. Res.77, 4476–4493.Google Scholar
  35. Wofsy, S. C. (1976),Interactions of CH 4 and CO in the Earth's Atmosphere, Ann. Rev. Earth Planet. Sci.4, 441–469.Google Scholar
  36. Wofsy, S. C., andLogan, J. A.,Recent Developments in Stratospheric Photochemistry, inCauses and Effects of Stratospheric Ozone Reduction: An Update, (National Academy of Sciences, Washington 1982).Google Scholar
  37. Wuebbles, D. J., Hutter, F. M., andPenner, J. E. (1982),Effects of Coupled Anthropogenic Perturbations on Stratospheric Ozone, Submitted to J. Geophys. Res.Google Scholar

Copyright information

© Birkhäuser Verlag 1982

Authors and Affiliations

  • Maria Pia Nicoli
    • 1
  • Guido Visconti
    • 1
    • 2
  1. 1.Istituto di FisicaUniversità dell'AquilaL'AquilaItaly
  2. 2.Istituto di Fisica dell' Atmosfera del CNR P. le L. SturzoRomaItaly

Personalised recommendations