pure and applied geophysics

, Volume 116, Issue 4–5, pp 615–626 | Cite as

Friction of rocks

  • J. Byerlee
Article

Abstract

Experimental results in the published literature show that at low normal stress the shear stress required to slide one rock over another varies widely between experiments. This is because at low stress rock friction is strongly dependent on surface roughness. At high normal stress that effect is diminished and the friction is nearly independent of rock type. If the sliding surfaces are separated by gouge composed of Montmorillonite or vermiculite the friction can be very low.

Key words

Rock mechanics Friction Faulting surfaces 

References

  1. Barton, M. (1973),Review of a new shear strength criterion for rock joints, Eng. Geol.7, 287–332.Google Scholar
  2. Byerlee, J. D. (1967),Frictional characteristics of granite under high confining pressure, J. Geophys. Res.72, 3639–3648.Google Scholar
  3. Byerlee, J. D. (1968),Brittle ducfile transition in rock, J. Geophys. Res.73 4741–4650.Google Scholar
  4. Byerlee, J. D. andBrace, W. F. (1968),Stick-slip stable sliding and earthquakes-effect of rock type, pressure, strain rate and stiffness, J. Geophys. Res.73, 6031–6037.Google Scholar
  5. Byerlee, J. D. (1970),Static and kinetic function of granite at high normal stress, Int. S. Rock Mich. Min. Sci.7, 577–582.Google Scholar
  6. Byerlee, J. D. (1975),The fracture strength and frictional strength of Weber sandstone, Inc. J. Rock Mich. Min. Sci.12, 1–4.Google Scholar
  7. Dieterich, J. H. (1972),Time dependent friction in rock, J. Geophys. Res.77, 3690–3697.Google Scholar
  8. Donath, F. D., Fruth, L. S. andOlsson, W. A. (1972),Experimental study of frictional properties of faults, 14th Symposium on rock mechanics, University Park, Penn.Google Scholar
  9. Edmond, O. andMurrell, S. A. F. (1971),Experimental observations and rock fracture at pressures up to 7 kb and the implications for earthquake faulting, Tectonophysics16, 71–87.Google Scholar
  10. Engelder, J. T. (1974),Coefficient of friction for sandstone sliding on quartz gouge, Advances in rock Mech. Proc. Third Congress Int. Soc. Rock Mech., Denver, Part A, p. 499.Google Scholar
  11. Handin, J. (1969),On the Coulomb-Mohr failure criterion, J. Geophys. Res.74, 5343–5348.Google Scholar
  12. Hoskins, E. R., Jaeger, J. C. andRosengren, K. (1968),A medium scale direct friction experiment, Int. J. Rock Mech. Min. Sci.4, 219–227.Google Scholar
  13. Jackson, R. E. andDunn, D. E. (1974),Experimental sliding friction and cataclasis of foliated rocks, Int. J. Rock Mech. Sci.11, 235–249.Google Scholar
  14. Jaeger, J. C. andCook, M. G. W.,Fundamentals of Rock Mechanics (Methuen, London 1969), Chapter III.Google Scholar
  15. Jaeger, J. C.,The behaviour of closely jointed rock, Proc. 11th Symp. Rock Mech. (Berkeley 1970), Chapter4, pp. 57–68.Google Scholar
  16. Jaeger, J. C. (1959),The frictional properties of joints in rock, Geophys. pura appl.43, 148–158.Google Scholar
  17. Jaeger, J. C. andRosengren, K. J. (1969),Friction and sliding of joints, Proc. Aust. Inst. Min. Metall.MO229, 93–104.Google Scholar
  18. Jaeger, J. C. (1971),Friction of rocks and stability of rock slopes, Geotechnique,21, 97–134.Google Scholar
  19. La Fountain andDunn, D. E. (1974),Effect of anisotrophy on the coefficient of sliding friction in schistose rocks, Int. J. Rock Mech. Min. Sci.,11, 459–464.Google Scholar
  20. Lane, K. S., andHeck, W. J. (1964),Triaxial testing for strength of rock joints, Proc. 6th Symp. Rock Mech. Rolla, pp. 98–108.Google Scholar
  21. Logan, J. M., Iwasaki, T., Friedman, M. andKing, S. A. (1973),Experimental investigations of sliding friction in multilithologic specimens, Geological Factors in Rapid Excavations (Ed. Pincus), Geol. Soc. Am. Eng. Case History q, pp. 55–67.Google Scholar
  22. Murrell, S. A. F. (1965),The effect of triaxial stress systems on the strength of rocks at atmospheric temperatures, J. Geophys. R. Ast. Soc.10, 231–281.Google Scholar
  23. Onaka, M. (1975),Frictional characteristics of typical rocks, J. Phys. Earth23, 87–112.Google Scholar
  24. Scholz, C. H. andEngelder, J. T. (1976),The role of asperity indentation and ploughing in rock friction — I, Asperity creep and stick-slip, Int. Rock Mech. Min. Sci.13, 149–154.Google Scholar
  25. Summers, R. andByerlee, J. (1977),A note on the effect of fault gouge composition on the stability of frictional sliding, Int. J. Rock Mech. Min. Sci. (in press).Google Scholar
  26. Zoback, M. andByerlee, J. (1976),A note on the deformational behavior and permeability of crushed granite, Int. J. Rock Mech. Min. Sci.13, 291–294.Google Scholar
  27. Summers, R. andByerlee, J. (1977), Unpublished data on the friction of clay minerals.Google Scholar
  28. Simkin, T. E.,The similarities of static and kinetic friction, inSurfaces and Interfaces (Ed. Weiss), (Syracuse University Press, 1967).Google Scholar
  29. Bowden, F. andTabor, D.,The Friction and Lubrication of Solids (Oxford University Press, 1950).Google Scholar
  30. Wang, Chi-Yuen, Goodman, R. E. andSundaran, P. M. (1975),Variations of V p and Vs in granite premonitory to shear rupture and stick-slip sliding: Applications to earthquake prediction, Geophys. Res. Letters2, 309–311.Google Scholar
  31. Scholz, C., Molnar, P. andJohnson, Tracey (1972),Detailed studies of frictional sliding of granite and implications for the earthquake mechanism, J. Geophys. Res.77, 6392–6406.Google Scholar
  32. Barton, H. (1976),The shear strength of rock and rock joints, Int. J. Rock Mech. Min. Sci.13, 255–279.Google Scholar
  33. Wu, F. T., Blatter, L. andRoberson, H. (1975),Clay gouges in the San Andreas fault system and their possible implications, Pure appl. Geophys.113, 87–95.Google Scholar

Copyright information

© Birkhäuser Verlag 1978

Authors and Affiliations

  • J. Byerlee
    • 1
  1. 1.U.S. Geological SurveyMenlo ParkUSA

Personalised recommendations