pure and applied geophysics

, Volume 138, Issue 4, pp 657–677

Relation of fracture resistance to fabric for granitic rocks

  • Osam Sano
  • Yozo Kudo
Article

Abstract

Double-torsion specimens of two granitic rocks were prepared in several directions with reference to microcracks fabric. Even for the same rock and at the same stress levels, the observed crack velocities in two granitic rocks were dependent on both the propagation direction and the opening direction. The maximum difference by several orders of magnitude was found for both rocks. The highest crack velocity was observed when the subcritical crack was parallel to most of the preexisting cracks. The maximum critical stress intensity factor was about twice as high as the minimum one in different directions. An analysis for a thin plate having anisotropic elasticity under torsional load showed that the observed difference in the crack velocity and the critical stress intensity factor was not an error due to conventional equations derived on the assumption of isotropic elasticity but the true material's property. As the preferred orientation of microcracks has been pointed out for many granitic rocks, we can conclude that the anisotropic nature of the fracture resistance of the two granitic rocks used in this study was not exceptional. A region of a transport-limited velocity was not found for rocks, even at the velocity of 10−2 m/s, that is almost equal to the theoretical limit of the stress corrosion cracking.

Key words

Granite subcritical crack growth stress corrosion double-torsion anisotropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R., andMcMillan, P. W. (1977),Review: Static Fatigue of Glass, J. Mat. Sci.12, 643–657.Google Scholar
  2. Anderson, O. L., andGrew, P. C. (1977),Stress Corrosion Theory of Crack Propagation with Applications to Geophysics, Rev. Geophys. Space Phys.15, 77–104.Google Scholar
  3. Atkinson, B. K. (1979),A Fracture Mechanics Study of Subcritical Tensile Cracking of Quartz in Wet Environments, Pure and Appl. Geophys.117, 1011–1024.Google Scholar
  4. Atkinson B. K. (1984),Subcritical Crack Growth in Geologic Materials, J. Geophys. Res.89, 4077–4114.Google Scholar
  5. Atkinson, B. K. andRawlings, R. D.,Acoustic emission during stress corrosion cracking in rocks InEarthquake Prediction (eds. Simpson, D. W., and Richards, P.) (American Geophysical Union, Washington, D.C. 1981) pp. 605–616.Google Scholar
  6. Atkinson, B. K., andMeredith, P. G. (1981),Stress Corrosion Cracking of Quartz: A Note on the Influence of Chemical Environment, Tectonophys.77, T1-T17.Google Scholar
  7. Atkinson, B. K., andMeredith, P. G. The theory of subcritical crack growth with applications to minerals and rocks. InFracture Mechanics of Rock (ed. Atkinson B. K.) (Academic Press, London 1987a) pp. 111–166.Google Scholar
  8. Atkinson, B. K., andMeredith, P. G.,Experimental fracture mechanics data for rocks and minerals. InFracture Mechanics of Rock (ed. Atkinson, B. K.) (Academic Press, London 1987b) pp. 477–525.Google Scholar
  9. Balk, R. (1937),Structural Behavior of Igneous Rocks, Mem. Geol. Soc. Am., 177 pp.Google Scholar
  10. Charles, R. J. (1958),Static Fatigue of Glass. I, J. Appl. Phys.29, 1549–1553.Google Scholar
  11. Charles, R. J.,The strength of silicate glasses and some crystalline oxides. InFracture (eds. Averbach, B. L., Felbeck, D. K., Hahn, G. T., and Thomas, D. A.) (MIT Press, Cambridge, Mass. 1959) pp. 225–250.Google Scholar
  12. Costin, L. S.,Time-dependent deformation and failure. InFracture Mechanics of Rock (ed. Atkinson, B. K.) (Academic Press, London 1987) pp. 167–215.Google Scholar
  13. Costin, L. S. andMecholsky, J. J. (1983),Time dependent crack growth and failure in brittle rock InProc. 24th U.S. Symposium on Rock Mechanics (ed. Mathewson, C. C.), pp. 385–394.Google Scholar
  14. Cruden, D. M. (1970),A Theory of Brittle Creep in Rock under Uniaxial Compression, J. Geophys. Res.75, 3431–3442.Google Scholar
  15. Dale, T. N. (1923),The Commercial Granites of New England. Part I, Bull. U.S. Geol. Surv.738, 1–97.Google Scholar
  16. Darot, M., andGueguen, Y. (1986),Slow Crack Growth in Minerals and Rocks: Theory and Experiments, Pure and Appl. Geophys.124, 677–692.Google Scholar
  17. Das, S., andScholz, C. H. (1981),Theory of Time-dependent Rupture in the Earth, J. Geophys. Res.86, 6039–6051.Google Scholar
  18. Evans, A. G. (1972),A Method for Evaluating the Time-dependent Failure Characteristics of Brittle Materials and its Applications to Polycrystalline Alumina, J. Mat. Sci.7, 1137–1146.Google Scholar
  19. Ferber, M. K., andBrown, S. D. (1980),Subcritical Crack Growth in Dense Alumina Exposed to Physiological Media, J. Am. Ceram. Soc.63, 424–429.Google Scholar
  20. Griffith, A. A. (1920),The Phenomena of Rupture and Flow in Solids, Philos. Trans. Roy. Soc. London Ser.A 221, 163–198.Google Scholar
  21. Hadley, K. (1975),Azimuthal Variation of Dilatancy, J. Geophys. Res.80, 4845–4850.Google Scholar
  22. Hoagland, R. G., Hahn, G. T., andRosenfield, A. R. (1973),Influence of Microstructure on Fracture Propagation in Rocks, Rock Mech.5, 77–106.Google Scholar
  23. Isnard, P., andLeymarie, P. (1964),Observations sur le fil du granite dans les carrières du Sidobre (Tarn), Sci. Terre, Nancy9, 423–437.Google Scholar
  24. Kies, J. A., andClark, A. B. J.,Fracture propagation rates and times to fail following proof stress in bulk glass. InFracture 1969 (ed. Pratt, P. L.) (Chapman and Hall, London 1969) pp. 483–530.Google Scholar
  25. Kudo, Y., Hashimoto, K., Sano, O., andNakagawa, K.,Relation between physical anisotropy and microstructures of granitic rock in Japan InProc. 6th Int. Congress on Rock Mech. (eds. Herget, G., and Vongpaisal, S.) (A. A. Balkema, Rotterdam 1987) pp. 429–432.Google Scholar
  26. Lawn, B. R. (1975),An Atomistic Model of Kinetic Crack Growth in Brittle Solids, J. Mat. Sci.10, 469–480.Google Scholar
  27. Lawn, B. R., andWilshaw, T. R. Fracture of Brittle Solids (Cambridge University Press, Cambridge 1975) 204 pp.Google Scholar
  28. Lekhnitskii, S. G.,Anisotropic Plates (Translated from Russian by Tsai, S. W. and Cheron, T.) (Gordon and Breach, New York 1968) 534 pp.Google Scholar
  29. Martin, R. J., III (1972)Time-dependent Crack Growth in Quartz and its Application to the Creep of Rocks, J. Geophys. Res.77, 1406–1419.Google Scholar
  30. Martin, R. J., III, andDurham, W. B. (1975),Mechanism of Crack Growth in Quartz, J. Geophys. Res.80, 4837–4844.Google Scholar
  31. Michalske, T. A., Singh, M., andFréchette, V. D.,Experimental observation of crack velocity and crack front shape effects in double-torsion fracture mechanics tests. InFracture Mechanics for Ceramics, Rocks and Concrete (eds. Freiman S. W., and Fuller, E. R., Jr.) (STP 745, ASTM, Philadelphia 1981) pp. 3–12.Google Scholar
  32. Mizutani, H., Spetzler, H., Getting, I., Martin, R. J., III, andSoga, N. (1977)The Effect of Outgassing upon the Closure of Cracks and the Strength of Lunar Analogues, Proc. Lunar Sci. Conf.8, 1235–1248.Google Scholar
  33. Mogi, K. (1977),Dilatancy of Rocks under General Triaxial Stress States with Special Reference to Earthquake Precursors J. Phys. Earth25, 203–217.Google Scholar
  34. Nur, A., andSimmons, G. (1970),The Origin of Small Cracks in Igneous Rocks, Int. J. Rock Mech. Min. Sci.7, 307–314.Google Scholar
  35. Nye, J. F.,Physical Properties of Crystals (Clarendon Press, Oxford 1957) 322 pp.Google Scholar
  36. Osborne, F. F. (1935),Rift, Grain, Hardway in Some Pre-Cambrian Granites, Quebec, Econ. Geol.30, 540–551Google Scholar
  37. Peck, L., Nolen-Hoeksema, R. C. Barton, C. C., andGordon, R. B. (1985),Measurement of Resistance of Imperfectly Elastic Rock to the Propagation of Tensile Cracks, J. Geophys. Res. 90, 7827–7836.Google Scholar
  38. Peng, S., andJohnson, A. M. (1972),Crack Growth and Faulting in Cylindrical Specimens of Chelmsford Granite, Int. J. Rock Mech. Min. Sci.9, 37–86Google Scholar
  39. Pletka, B. J., andWiederhorn, S. M.,Subcritical crack growth in glass ceramics. InFracture Mechanics of Ceramics, Vol. 4 (eds. Bradt, R. C., Hasselman, D. P. H., and Lange, F. F.) (Plenum Press, New York 1978) pp. 745–760.Google Scholar
  40. Pletka, B. J., Fuller, E. R., Jr. andKoepke, B. G.,An evaluation of double torsion testing. InFracture Mechanics Applied to Brittle Materials (ed. Freiman, S. W.) (STP 678, ASTM, Philadelphia 1979) pp. 19–37.Google Scholar
  41. Price, N. J.,Fault and Joint Development (Pergamon Press, Oxford 1966) 176 pp.Google Scholar
  42. Sano, O.,Fundamental Study on the Mechanism of Brittle Fracture of Rocks, Ph.D. Thesis (Kyoto Univ., Kyoto, Japan, 1978).Google Scholar
  43. Sano, O. (1981),A Note on the Sources of Acoustic Emissions Associated with Subcritical Crack Growth, Int. J. Rock. Mech. Min. Sci. and Geomech. Abstr.18, 259–263.Google Scholar
  44. Sano, O. (1988),A Revision of the Double-torsion Technique for Brittle Materials, J. Mat. Sci.23, 2505–2511.Google Scholar
  45. Sano, O., Ito, I. andTerada, M. (1981),Influence of Strain Rate on Dilatancy and Strength of Oshima Granite under Uniaxial Compression, J. Geophys. Res.86, 9299–9311.Google Scholar
  46. Sano, O., Ehara, S., andTerada, M. (1982),A Study of the Time-dependent Microfracturing and Strength of Oshima Granite, Tectonophys.84, 343–362.Google Scholar
  47. Sano, O., Kudo, Y., andMizuta, Y. (1992),Experimental Determination of Elastic Constants of Oshima Granite, Barre Granite and Chelmsford Granite, J. Geophys. Res.97, 3367–3379.Google Scholar
  48. Scholz, C. H. (1968a),Mechanism of Creep in Brittle Rock, J. Geophys. Res.73, 3295–3302.Google Scholar
  49. Scholz, C. H. (1968b),Microfractures, Aftershocks, and Seismicity, Bull. Seismol. Soc. Am.58, 1117–1130.Google Scholar
  50. Scholz, C. H. (1972),Static Fatigue of Quartz, J. Geophys. Res.77, 2104–2114.Google Scholar
  51. Scholz, C. H., andKoczynski, T. A. (1979),Dilatancy Anisotropy and the Response of Rock to Large Cyclic Loads, J. Geophys. Res.84, 5525–5534.Google Scholar
  52. Sih, G. C., Paris, P. C., andIrwin, G. R. (1965),On Cracks in Rectilinearly Anisotropic Bodies, Int. J. Fract. Mech.1, 189–203.Google Scholar
  53. Swanson, P. L.,Stress Corrsion Cracking in Westerly Granite: An Examination by the Double Torsion Technique, Ms. Thesis (University of Colorado, Boulder, CO 1980).Google Scholar
  54. Swanson, P. L. (1984),Subcritical Crack Growth and Other Time-and Environment-dependent Behavior in Crustal Rocks, J. Geophys. Res.89, 4137–4152.Google Scholar
  55. Swanson, P. L. Subcritical Fracture Propagation in Rocks: An Examination Using the Methods of Fracture Mechancis and Nondestructive Testing, Ph.D. Thesis (University of Colorado, Boulder, CO 1985).Google Scholar
  56. Waza, T., Kurita, K. andMizutani, H. (1980),The Effect of Water on the Subcritical Crack Growth in Silicate Rocks, Tectonophys.67, 25–34.Google Scholar
  57. Wiederhorn, S. M. (1967),Influence of Water Vapor on Crack Propagation in Soda-lime Glass, J. Am. Ceram. Soc.50, 407–414.Google Scholar
  58. Wiederhorn, S. M., andBolz, L. H. (1970),Stress Corrosion and Static Fatigue of Glass, J. Am. Ceram. Soc.53, 543–548.Google Scholar
  59. Wiederhorn, S. M., andJohnson, H. (1973),Effect of Electrolyte pH on Crack Propagation in Glass, J. Am. Ceram. Soc.56, 192–197.Google Scholar
  60. Williams, D. P., andEvans, A. G. (1973),A Simple Method for Studying Slow Crack Growth, J. Test. Eval.1, 264–270.Google Scholar

Copyright information

© Birkhäuser Verlag 1992

Authors and Affiliations

  • Osam Sano
    • 1
  • Yozo Kudo
    • 2
  1. 1.Yamaguchi UniversityUbeJapan
  2. 2.Tokuyama Technical CollegeTokuyamaJapan

Personalised recommendations