Advertisement

pure and applied geophysics

, Volume 142, Issue 3–4, pp 777–794 | Cite as

The micromechanics of friction in a granular layer

  • Charles G. Sammis
  • Sandra J. Steacy
Frictional Slip, Failure, and Deformation Mechanics: Laboratory Studies

Abstract

A grain bridge model is used to provide a physical interpretation of the rate- and state-dependent friction parameters for the simple shear of a granular layer. This model differs from the simpler asperity model in that it recognizes the difference between the fracture of a grain and the fracture of an adhesion between grains, and it explicitly accounts for dilation in the granular layer. The model provides an explanation for the observed differences in the friction of granular layers deformed between rough surfaces and those deformed between smooth surfaces and for the evolution of the friction parameters with displacement. The observed evolution from velocity strengthening to velocity weakening with displacement is interpreted as being due to the change in the micromechanics of strain accommodation from grain crushing to slip between adjacent grains; this change is associated with the observed evolution of a fractal grain structure.

Key words

Friction gouge stick-slip granular mechanics earthquake mechanics fragmentation cataclasis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An, L.-J., andSammis, C. G. (1993),Particle Size Distribution of Cataclastic Fault Materials from Southern California: A 3-D Study, Pure and Applied Geophysics, submitted.Google Scholar
  2. Biegel, R. L., Sammis, C. G., andDieterich, J. H. (1989),The Frictional Properties of a Simulated Gouge Having a Fractal Particle Distribution, J. Structural Geol.11, 827–846.Google Scholar
  3. Bowden, F. P., andTabor, D.,The Friction and Lubrication of Solids, Part I. (Oxford: Clarendon Press 1950).Google Scholar
  4. Bowden, F. P., andTabor, D.,The Friction and Lubrication of Solids, Part II. (Oxford: Clarendon Press 1950).Google Scholar
  5. Brace, W. F., andMartin, R. J. (1968),A Test of the Law of Effective Stress for Crystalline Rocks of Low Porosity, Int. J. Rock Mech. Min. Sci.5, 415–426.Google Scholar
  6. Dieterich, J. H. (1972),Time-dependent Friction in Rocks, J. Geophys. Res.77, 3690–3697.Google Scholar
  7. Dieterich, J. H. (1978),Time-dependent Friction and the Mechanics of Stick-slip, Pure and Appl. Geophys.116, 790–806.Google Scholar
  8. Dieterich, J. H. (1979),Modeling of Rock Friction: 1. Experimental Results and Constitutive Equations, J. Geophys. Res.84, 2161–2168.Google Scholar
  9. Dieterich, J. H.,Constitutive properties of faults with simulated gouge. InMechanical Behavior of Crustal Rocks Geophys. Monogr. 24 (American Geophysical Union 1981) pp. 108–120.Google Scholar
  10. Dieterich, J.,A model for the nucleation of earthquake slip. InEarthquake Source Mechanics. AGU Geophys. Mono. 37 (Washington, D.C., American Geophysical Union 1986) pp. 37–49.Google Scholar
  11. Dieterich, J. H. (1993),Direct Observation of Frictional Contacts: New Insights for Sliding Memory Effects, submitted to Science.Google Scholar
  12. Gallagher, J. J., Friedman, M., Handin, J., andSowers, G. M. (1974),Experimental Studies Relating to Microfracture in Sandstone, Tectonophys.21, 203–247.Google Scholar
  13. Marone, C., andScholz, C. H. (1989),Particle-size Distribution and Microstructures within Simulated Fault Gouge, J. Struct. Geology.11, 799–814.Google Scholar
  14. Marone, C., Raleigh, C. B., andScholz, C. H. (1990),Frictional Behavior and Constitutive Modeling of Simulated Fault Gouge, J. Geophys. Res.95, 7007–7026.Google Scholar
  15. Marone, C., andKilgore, B. (1993),Scaling of the Critical Slip Distance for Seismic Faulting with Shear Strain in Fault Zones, Nature362, 618–621.Google Scholar
  16. Marone, C., andCox, S. J. D. (1994),Scaling in Rock Friction Laws: The Effects of Surface Roughness and Cumulative Offset on Friction of Gabbro, Pure and Appl. Geophys., this volume.Google Scholar
  17. Mandl, G., Dejong, L. N. J., andMaltha, A. (1977),Shear Zones in Granular Material: An Experimental Study of their Structure and Mechanical Genesis, Rock Mechanics9, 95–144.Google Scholar
  18. Morrow, C. A., andByerlee, J. D. (1989),Experimental Studies of Compaction and Dilatancy During Frictional Sliding on Faults Containing Gouge, J. Struct. Geol.11, 815–825.Google Scholar
  19. Okubo, P. G., andDieterich, H. H. (1984),Effects of Physical Fault Properties on Frictional Instabilities Produced on Simulated Faults, J. Geophys. Res.89, 5817–5827.Google Scholar
  20. Paterson, M. S.,Experimental Rock Deformation—The Brittle Field (Springer-Verlag, N. Y. 1978).Google Scholar
  21. Ruina, A. L. (1983),Slip Instability and State Variable Friction Laws, J. Geophys. Res.88, 10359–10370.Google Scholar
  22. Sammis, C. G., King, G., andBiegel, R. L. (1987),The Kinematics of Gouge Deformation, Pure and Appl., Geophys.125, 777–812.Google Scholar
  23. Steacy, S. J., andSammis, C. G. (1991),An Automaton for Fractal Patterns of Fragmentation, Nature353, 250–252.Google Scholar
  24. Tullis, T. E., andWeeks, J. D. (1986),Constitutive Behavior and Stability of Frictional Sliding of Granite, Pure and Applied Geophys.124, 383–414.Google Scholar
  25. Tullis, T. E., andWeeks, J. D. (1987),Micromechanics of Frictional Resistance of Calcite, Trans. Am. Geophys. Union65, 405.Google Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • Charles G. Sammis
    • 1
  • Sandra J. Steacy
    • 2
  1. 1.Department of Geological SciencesUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Environmental StudiesUniversity of UlsterColeraineN. Ireland

Personalised recommendations